matsutaku-library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub MatsuTaku/matsutaku-library

:heavy_check_mark: test/succinct/wavelet_tree_test.cpp

Code

#define STANDALONE
#include "include/mtl/succinct/wavelet_tree.hpp"
#include <bits/stdc++.h>
using namespace std;

int main() {
  const int n = 1e6;
  std::vector<char> S(n);
  std::array<int, 26> cnt{};
  std::array<std::vector<int>, 26> rank, select, rank_c;
  for (int i = 0; i < 26; i++) {
    rank[i].resize(n+1);
    rank_c[i].resize(n+1);
  }
  for (int i = 0; i < n; i++) {
    int c = rand()%26;
    S[i] = c;
    for (int j = 0; j < 26; j++) {
      rank[j][i] = cnt[j];
      if (j) rank_c[j][i] = rank_c[j-1][i] + cnt[j-1];
    }
    cnt[c]++;
    select[c].push_back(i);
  }
  for (int i = 0; i < 26; i++) {
    rank[i][n] = cnt[i];
    if (i) rank_c[i][n] = rank_c[i-1][n] + cnt[i-1];
    select[i].push_back(n);
  }

  WaveletTree<char> wm(S.begin(), S.end());
  // access
  for (int i = 0; i < n; i++) {
    char v = wm.get(i);
    if (v != S[i]) {
      cout << "Failed access "<<i<<" wm.get: "<<char(v+'a')<<" != S: "<<char(S[i]+'a')<<endl;
      return 1;
    }
  }
  // rank
  for (int i = 0; i <= n; i++) {
    for (int c = 0; c < 26; c++) {
      int v = wm.rank(c, i);
      if (v != rank[c][i]) {
        cout << "Failed rank "<<char(c+'a')<<", "<<i<<" wm.rank: "<<v<<" != rank: "<<rank[c][i]<<endl;
        return 1;
      }
    }
  }
  // select
  std::array<int, 26> selected{};
  for (int i = 0; i < n; i++) {
    int c = S[i];
    int k = selected[c]++;
    int v = wm.select(c, k);
    if (v != select[c][k] or v != i) {
      cout << "Failed select "<<char(S[i]+'a')<<", "<<k<<" wm.select: "<<v<<" != select: "<<select[c][k]<<endl;
      return 1;
    }
  }
  for (int c = 0; c < 26; c++) {
    int k = selected[c];
    int v = wm.select(c, k);
    if (v != select[c][k] or v != n) {
      cout << "Failed select "<<char(c + 'a')<<", "<<k<<" wm.select: "<<v<<" != select: "<<select[c][k]<<endl;
      return 1;
    }
  }
  // rank_c
  for (int i = 0; i <= n; i++) {
    for (int c = 0; c < 26; c++) {
      int v = wm.rank_lower(c, i);
      if (v != rank_c[c][i]) {
        cout << "Failed rank_c "<<char(c+'a')<<", "<<i<<" wm.rank_lower: "<<v<<" != rank_c: "<<rank_c[c][i]<<endl;
        return 1;
      }
    }
  }
  // enumerate
  const int m = std::min(n, (int)cbrt(n*6));
  for (int l = 0; l < m; l++) {
    for (int r = l+1; r <= m; r++) {
      std::array<int, 26> enm{};
      for (int c = 0; c < 26; c++) enm[c] = rank[c][r] - rank[c][l];
      auto _v = wm.enumerate(l, r);
      std::array<int, 26> v{};
      for (auto p : _v) v[p.first] = p.second;
      for (int c = 0; c < 26; c++) {
        if (v[c] != enm[c]) {
          cout << "Failed enumerate "<<l<<", "<<r<<", "<<char(c+'a')<<" wm.enumerate: "<<v[c]<<" != "<<enm[c]<<endl;
          return 1;
        }
      }
    }
  }
  std::cout << "OK" << std::endl;
}
#line 1 "test/succinct/wavelet_tree_test.cpp"
#define STANDALONE
#line 2 "include/mtl/succinct/wavelet_tree.hpp"
#include <limits>
#include <array>
#include <iterator>
#include <algorithm>
#include <queue>
#include <tuple>
#line 2 "include/mtl/bit_manip.hpp"
#include <cstdint>
#include <cassert>
#if __cplusplus >= 202002L
#ifndef MTL_CPP20
#define MTL_CPP20
#endif
#include <bit>
#endif

namespace bm {

/// Count 1s for each 8 bits
inline constexpr uint64_t popcnt_e8(uint64_t x) {
  x = (x & 0x5555555555555555) + ((x>>1) & 0x5555555555555555);
  x = (x & 0x3333333333333333) + ((x>>2) & 0x3333333333333333);
  x = (x & 0x0F0F0F0F0F0F0F0F) + ((x>>4) & 0x0F0F0F0F0F0F0F0F);
  return x;
}
/// Count 1s
inline constexpr unsigned popcnt(uint64_t x) {
#ifdef MTL_CPP20
  return std::popcount(x);
#else
  return (popcnt_e8(x) * 0x0101010101010101) >> 56;
#endif
}
/// Alias to mtl::popcnt(x)
constexpr unsigned popcount(uint64_t x) {
  return popcnt(x);
}
/// Count trailing 0s. s.t. *11011000 -> 3
inline constexpr unsigned ctz(uint64_t x) {
#ifdef MTL_CPP20
  return std::countr_zero(x);
#else
  return popcnt((x & (-x)) - 1);
#endif
}
/// Alias to mtl::ctz(x)
constexpr unsigned countr_zero(uint64_t x) {
  return ctz(x);
}
/// Count trailing 1s. s.t. *11011011 -> 2
inline constexpr unsigned cto(uint64_t x) {
#ifdef MTL_CPP20
  return std::countr_one(x);
#else
  return ctz(~x);
#endif
}
/// Alias to mtl::cto(x)
constexpr unsigned countr_one(uint64_t x) {
  return cto(x);
}
inline constexpr unsigned ctz8(uint8_t x) {
  return x == 0 ? 8 : popcnt_e8((x & (-x)) - 1);
}
/// [00..0](8bit) -> 0, [**..*](not only 0) -> 1
inline constexpr uint8_t summary(uint64_t x) {
  constexpr uint64_t hmask = 0x8080808080808080ull;
  constexpr uint64_t lmask = 0x7F7F7F7F7F7F7F7Full;
  auto a = x & hmask;
  auto b = x & lmask;
  b = hmask - b;
  b = ~b;
  auto c = (a | b) & hmask;
  c *= 0x0002040810204081ull;
  return uint8_t(c >> 56);
}
/// Extract target area of bits
inline constexpr uint64_t bextr(uint64_t x, unsigned start, unsigned len) {
  uint64_t mask = len < 64 ? (1ull<<len)-1 : 0xFFFFFFFFFFFFFFFFull;
  return (x >> start) & mask;
}
/// 00101101 -> 00111111 -count_1s-> 6
inline constexpr unsigned log2p1(uint8_t x) {
  if (x & 0x80)
    return 8;
  uint64_t p = uint64_t(x) * 0x0101010101010101ull;
  p -= 0x8040201008040201ull;
  p = ~p & 0x8080808080808080ull;
  p = (p >> 7) * 0x0101010101010101ull;
  p >>= 56;
  return p;
}
/// 00101100 -mask_mssb-> 00100000 -to_index-> 5
inline constexpr unsigned mssb8(uint8_t x) {
  assert(x != 0);
  return log2p1(x) - 1;
}
/// 00101100 -mask_lssb-> 00000100 -to_index-> 2
inline constexpr unsigned lssb8(uint8_t x) {
  assert(x != 0);
  return popcnt_e8((x & -x) - 1);
}
/// Count leading 0s. 00001011... -> 4
inline constexpr unsigned clz(uint64_t x) {
#ifdef MTL_CPP20
  return std::countl_zero(x);
#else
  if (x == 0)
    return 64;
  auto i = mssb8(summary(x));
  auto j = mssb8(bextr(x, 8 * i, 8));
  return 63 - (8 * i + j);
#endif
}
/// Alias to mtl::clz(x)
constexpr unsigned countl_zero(uint64_t x) {
  return clz(x);
}
/// Count leading 1s. 11110100... -> 4
inline constexpr unsigned clo(uint64_t x) {
#ifdef MTL_CPP20
  return std::countl_one(x);
#else
  return clz(~x);
#endif
}
/// Alias to mtl::clo(x)
constexpr unsigned countl_one(uint64_t x) {
  return clo(x);
}

inline constexpr unsigned clz8(uint8_t x) {
  return x == 0 ? 8 : 7 - mssb8(x);
}
inline constexpr uint64_t bit_reverse(uint64_t x) {
  x = ((x & 0x00000000FFFFFFFF) << 32) | ((x & 0xFFFFFFFF00000000) >> 32);
  x = ((x & 0x0000FFFF0000FFFF) << 16) | ((x & 0xFFFF0000FFFF0000) >> 16);
  x = ((x & 0x00FF00FF00FF00FF) << 8) | ((x & 0xFF00FF00FF00FF00) >> 8);
  x = ((x & 0x0F0F0F0F0F0F0F0F) << 4) | ((x & 0xF0F0F0F0F0F0F0F0) >> 4);
  x = ((x & 0x3333333333333333) << 2) | ((x & 0xCCCCCCCCCCCCCCCC) >> 2);
  x = ((x & 0x5555555555555555) << 1) | ((x & 0xAAAAAAAAAAAAAAAA) >> 1);
  return x;
}

/// Check if x is power of 2. 00100000 -> true, 00100001 -> false
constexpr bool has_single_bit(uint64_t x) noexcept {
#ifdef MTL_CPP20
  return std::has_single_bit(x);
#else
  return x != 0 && (x & (x - 1)) == 0;
#endif
}

/// Bit width needs to represent x. 00110110 -> 6
constexpr int bit_width(uint64_t x) noexcept {
#ifdef MTL_CPP20
  return std::bit_width(x);
#else
  return 64 - clz(x);
#endif
}

/// Ceil power of 2. 00110110 -> 01000000
constexpr uint64_t bit_ceil(uint64_t x) {
#ifdef MTL_CPP20
  return std::bit_ceil(x);
#else
  if (x == 0) return 1;
  return 1ull << bit_width(x - 1);
#endif
}

/// Floor power of 2. 00110110 -> 00100000
constexpr uint64_t bit_floor(uint64_t x) {
#ifdef MTL_CPP20
  return std::bit_floor(x);
#else
  if (x == 0) return 0;
  return 1ull << (bit_width(x) - 1);
#endif
}

} // namespace bm
#line 4 "include/mtl/succinct/select.hpp"

struct select64 {
    using size_type = uint8_t;
    static struct make_select_table {
        using bitmap_type = uint8_t;
        std::array<std::array<size_type, 9>, 1<<8> tb;
        make_select_table() {
            for (int i = 0; i < 1<<8; i++) {
                int c = 0;
                int x = i;
                tb[i].fill(8);
                for (int j = 0; j < 8; j++) {
                    if (x & 1)
                    tb[i][++c] = j;
                    x >>= 1;
                }
            }
        }
        size_type operator()(bitmap_type bitmap, size_type ith) const {
            return tb[bitmap][ith];
        }
    } sel_tb;
    template<bool B>
    static constexpr size_type select(size_type ith, uint64_t bitmap) { // 0-indexed
        assert(ith < 64);
        ith++; // to 1-index
        // Find byte
        uint64_t w = bitmap;
        if constexpr (!B) w = ~w;
        auto _bs = (uint64_t) bm::popcnt_e8(w) * 0x0101010101010100ull;
        auto bs = (const uint8_t*) &_bs;
        size_type b = 0;
        auto o = ith;
        /* Following bit-manipulates code is same as ... */
        // {
        //     auto d = 8;
        //     while (d > 1) {
        //     auto c = b + d/2;
        //     if (bs[c] < o)
        //         b = c;
        //     d /= 2;
        //     }
        // }
        {
            uint64_t x = (uint64_t) o * 0x0101010101010101ull;
            uint64_t bmx = (_bs | 0x8080808080808080ull) - x;
            uint64_t y = ((bmx & 0x8080808080808080ull) * 0x02040810204081ull) >> (64-8);
            size_type nb = bm::ctz8(y) - 1;
            // assert(b == nb);
            b = nb;
        }
        // Calc select
        auto r = o - bs[b];
        uint8_t byte = ((const uint8_t*)(&w))[b];
        assert(r and r <= (size_type)bm::popcnt(byte));
        return b * 8 + sel_tb(byte, r);
    }
    static constexpr size_type select1(size_type ith, uint64_t bitmap) {
        return select<1>(ith, bitmap);
    }
    static constexpr size_type select0(size_type ith, uint64_t bitmap) {
        return select<0>(ith, bitmap);
    }
};

typename select64::make_select_table select64::sel_tb;
#line 3 "include/mtl/succinct/bv.hpp"
#include <vector>
#include <cstddef>
#line 6 "include/mtl/succinct/bv.hpp"
#include <bitset>
#include <iostream>

#if __cpp_concepts >= 202002L
#include <concepts>
template<class T>
concept ConstructableBV = requires(T t, size_t s) {
  { t.size() } -> std::same_as<size_t>;
  { t.word_size() } -> std::same_as<size_t>;
  { t.get_word(s) } -> std::convertible_to<uint64_t>;
};
#endif

template<
#if __cpp_concepts >= 202002L
  ConstructableBV
#else
  class 
#endif
    BitVec, unsigned WordSize>
struct BV {
  static_assert(WordSize <= 64, "WordSize must be <= 64");
  static constexpr unsigned S = WordSize;
  static constexpr unsigned S_PER_L = 8;
  static constexpr unsigned L = S*S_PER_L;
  using bitvec_type = BitVec;
  const bitvec_type* bm_;
  std::vector<uint64_t> _r, _s, _zs;
  
  BV() = default;
  explicit BV(const bitvec_type* bm) {
    build(bm);
  }
  void set_ptr(const bitvec_type* bm) {
    bm_ = bm;
  }
  void build(const bitvec_type* bm) {
    set_ptr(bm);
    const auto num_l = (bm->size() + L-1) / L;
    _r.assign((num_l + 1) * 2, 0);
    _s.clear();
    _s.push_back(0);
    _zs.clear();
    _zs.push_back(0);
    uint64_t sum = 0;
    for (size_t l = 0; l < num_l; ++l) {
      auto psum = sum;
      uint64_t sum_l = 0;
      for (size_t s = 0; s < S_PER_L; ++s) {
        if (l * S_PER_L + s < bm->word_size())
          sum_l += bm::popcnt(bm->get_word(l * S_PER_L + s));
        if (s < S_PER_L-1)
          _r[l * 2 + 1] |= sum_l << ((7-(s+1)) * 9);
      }
      sum += sum_l;
      _r[(l + 1) * 2] = sum;
      if (psum / L != sum / L) {
        _s.push_back(l);
      }
      if ((L*l - psum) / L != (L*(l+1) - sum) / L) {
        _zs.push_back(l);
      }
    }
    _s.push_back(num_l);
    _zs.push_back(num_l);
  }

  template<bool B>
  size_t get_l(size_t l) const {
    auto b = _r[l*2];
    return B ? b : l * L - b;
  }
  static constexpr size_t s_off(size_t s) {
    return (7-s) * 9;
  }
  template<bool B>
  size_t get_s(size_t l, size_t s) const {
    auto b = (_r[l*2+1] >> s_off(s)) % (1ull<<9);
    return B ? b : s * S - b;
  }
  uint64_t mask(size_t width) const {
    return width == 64 ? ~0ull : (1ull << width) - 1;
  }
  size_t rank1(size_t i) const {
    auto l = i / L;
    auto s = i % L / S;
    auto q = i / S;
    auto r = i % S;
    assert(bm_ != nullptr);
    auto w = bm_->get_word(q) & mask(r);
    return get_l<1>(l) + 
           get_s<1>(l, s) + 
           bm::popcnt(w);
  }
  size_t rank0(size_t i) const { 
    return i - rank1(i);
  }
  template<bool B>
  size_t rank(size_t i) const {
    if constexpr (B)
      return rank1(i);
    else
      return rank0(i);
  }

  static struct l_block_cap_mask {
    uint64_t mask;
    constexpr l_block_cap_mask() : mask(0) {
      for (unsigned i = 0; i < S_PER_L; i++) {
        uint64_t cap = i * S;
        mask |= cap << s_off(i);
      }
    }
  } l_block_cap;

  template<bool B>
  size_t select(size_t ith) const {
    auto n = ith+1; // to 1-indexed
    if (n > rank<B>(bm_->size()))
      return bm_->size();
    // Find L block
    auto& idx = B ? _s : _zs;
    size_t l = idx[n / L];
    {
      auto r = idx[n / L + 1] + 1;
      while (l+1 < r) {
        auto c = l + (r-l)/2;
        if (get_l<B>(c) < n)
          l = c;
        else
          r = c;
      }
    }
    // Find S block
    size_t s = 0;
    auto m = n - get_l<B>(l);
    /* Following bit-manipulates code is same as ... */
//    {
//      auto d = 8;
//      while (d > 1) {
//        auto c = s + d/2;
//        if (get_s<B>(l, c) < m)
//          s = c;
//        d /= 2;
//      }
//    }
    {
      uint64_t x = (uint64_t) (m-1) * 0x0040201008040201ull;
      uint64_t a = _r[l*2+1];
      if constexpr (!B)
        a = l_block_cap.mask - a; // to 0s sum
      uint64_t xda = x - a;
      uint64_t sm = 0x4020100804020100ull;
      uint64_t ok = (~x | a) & sm;
      uint64_t ng = (~x & a) & sm;
      uint64_t y = ((x ^ a ^ xda) & ok) | ng;
      y = y * 0x0001010101010101ull >> (64-1-7);
      auto id = bm::clz8(y)-1;
      auto clo = bm::clz((~xda << 1 | 1) << (9*id));
      auto ns = id + (clo ? (clo - 1) / 9 : 0);
      s = ns;
    }
    // Calc select
    auto o = m - get_s<B>(l, s);
    uint64_t w = bm_->get_word(l * S_PER_L + s);
    return l * L + 
           s * S + 
           select64::select<B>(o-1, w);
  }
  size_t select1(size_t ith) const {
    return select<1>(ith);
  }
  size_t select0(size_t ith) const {
    return select<0>(ith);
  }
};

template<class BitVec, unsigned WordSize>
typename BV<BitVec, WordSize>::l_block_cap_mask BV<BitVec, WordSize>::l_block_cap;
#line 9 "include/mtl/succinct/bitmap.hpp"

auto t = std::iterator_traits<std::vector<bool>::iterator>::iterator_category();

/// Bitmap is likes std::vector<bool> with advanced operations
struct Bitmap {
  using value_type = bool;
  using W = uint64_t;
  std::vector<W> arr;
  size_t sz;
  static constexpr size_t required_word_size(size_t n) {
    return (n+63) / 64;
  }
  static constexpr W word_filled_by(bool bit) {
    return bit ? 0xFFFFFFFFFFFFFFFF : 0;
  }
  explicit Bitmap(size_t n = 0, bool bit = false) 
    : arr(required_word_size(n), word_filled_by(bit)), sz(n) {}
  template<typename It>
  Bitmap(It begin, It end) : sz(0) {
    using trait = std::iterator_traits<It>;
    using iterator_category = typename trait::iterator_category;
    static_assert(std::is_base_of<std::input_iterator_tag, iterator_category>::value, "");
    static_assert(std::is_convertible<typename trait::value_type, bool>::value, "");
    if constexpr (std::is_base_of<std::random_access_iterator_tag, iterator_category>::value) {
      arr.reserve(required_word_size(std::distance(begin, end)));
    }
    for (auto it = begin; it != end; ++it)
      push_back((bool)*it);
  }

  size_t size() const { return sz; }
  bool empty() const { return size() == 0; }

  void push_back(bool bit) {
    auto r = sz % 64;
    if (r == 0) {
      arr.push_back((W)bit);
    } else {
      if (bit)
        arr.back() |= 1ull << r;
      else
        arr.back() &= ~(1ull << r);
    }
    ++sz;
  }
  void pop_back() {
    --sz;
  }
  void resize(size_t new_size, bool bit=false) { // TODO: fix when bit = true
    auto old_size = size();
    sz = new_size;
    if (new_size < old_size) {
      return;
    }
    arr.resize(required_word_size(new_size), word_filled_by(bit));
    auto r = old_size % 64;
    if (r) {
      W mask = (1ull << r) - 1;
      if (bit)
        arr[old_size / 64] |= ~mask;
      else
        arr[old_size / 64] &= mask;
    }
  }
  void assign(size_t new_size, bool bit) {
    sz = new_size;
    arr.assign(required_word_size(new_size), word_filled_by(bit));
  }
  void reserve(size_t reserved_size) {
    arr.reserve(required_word_size(reserved_size));
  }

  struct const_reference;
  struct reference;
  template<bool>
  struct _iterator;
  using const_iterator = _iterator<true>;
  using iterator = _iterator<false>;

  const_reference operator[](size_t i) const {
    return const_reference(arr.data() + i / 64, 1ull << (i % 64));
  }
  reference operator[](size_t i) {
    return {arr.data() + i / 64, 1ull << (i % 64)};
  }
  const_reference get(size_t i) const {
    return operator[](i);
  }
  /**
   * Usable without pre-set required size
  */
  void set(size_t i, bool b) {
    if (i >= size())
      resize(i + 1);
    operator[](i) = b;
  }
  /**
   * No build process is needed
  */
  void build() const {}
  void move_or_build(Bitmap&& src) {
    *this = std::move(src);
  }
  const_iterator begin() const { return const_iterator(arr.data(), 0); }
  iterator begin() { return iterator(arr.data(), 0); }
  const_iterator cbegin() const { return begin(); }
  const_iterator end() const { return const_iterator(arr.data() + sz / 64, sz % 64); }
  iterator end() { return iterator(arr.data() + sz / 64, sz % 64); }
  const_iterator cend() const { return end(); }

  template<bool Const>
  struct reference_base {
    using _pointer = typename std::conditional<Const, const W*, W*>::type;
    using _iterator = typename std::conditional<Const, const_iterator, iterator>::type;
    _pointer ptr;
    W mask;
    reference_base(_pointer ptr, W mask) : ptr(ptr), mask(mask) {}
    reference_base(const reference_base&) = delete;
    reference_base& operator=(const reference_base&) = delete;
    reference_base(reference_base&&) noexcept = default;
    reference_base& operator=(reference_base&&) noexcept = default;
    inline operator bool() const {
      return (*ptr & mask) != 0;
    }
    inline bool operator==(bool r) const {
      return (bool) *this == r;
    }
    inline friend bool operator==(bool l, const reference_base& r) {
      return r == l;
    }
    inline bool operator!=(bool r) const {
      return (bool) *this != r;
    }
    inline friend bool operator!=(bool l, const reference_base& r) {
      return r != l;
    }
    _iterator operator&() const {
      return {ptr, bm::ctz(mask)};
    }
    std::ostream& operator<<(std::ostream& os) const {
      return os << (bool) *this;
    }
  };
  struct const_reference : public reference_base<true> {
    using _base = reference_base<true>;
    const_reference(_base::_pointer ptr, W mask) : _base(ptr, mask) {}
    const_reference(const reference& rhs) : _base(rhs.ptr, rhs.mask) {}
  };
  struct reference : public reference_base<false> {
    using _base = reference_base<false>;
    reference(_base::_pointer ptr, W mask) : _base(ptr, mask) {}
    inline reference& operator=(bool bit) {
      if (bit)
        *ptr |= mask;
      else
        *ptr &= ~mask;
      return *this;
    }
    inline reference& operator|=(bool bit) {
      if (bit)
        *ptr |= mask;
      return *this;
    }
    inline reference& operator&=(bool bit) {
      if (!bit)
        *ptr &= ~mask;
      return *this;
    }
    template<bool C>
    inline reference& operator=(const reference_base<C>& rhs) {
      return *this = (bool) rhs;
    }
    reference(const reference& rhs) = delete;
    reference(reference&& rhs) noexcept = default;
    reference& operator=(reference&& rhs) noexcept = default;
    std::istream& operator>>(std::istream& is) {
      bool b;
      is >> b;
      operator=(b);
      return is;
    }
  };

  template<bool Const>
  struct _iterator {
    using iterator_category = std::random_access_iterator_tag;
    using value_type = bool;
    using difference_type = std::ptrdiff_t;
    using pointer = iterator;
    using reference = typename std::conditional<Const, const_reference, Bitmap::reference>::type;

    using _pointer = typename std::conditional<Const, const W*, W*>::type;
    _pointer ptr;
    unsigned ctz;
    _iterator(_pointer ptr, unsigned ctz) : ptr(ptr), ctz(ctz) {}
    inline reference operator*() const {
      return reference(ptr, 1ull << ctz);
    }
    template<bool C>
    inline bool operator==(const _iterator<C>& r) const {
      return ptr == r.ptr and ctz == r.ctz;
    }
    template<bool C>
    inline bool operator!=(const _iterator<C>& r) const {
      return ptr != r.ptr or ctz != r.ctz;
    }
    inline _iterator& operator++() {
      if (ctz % 64 < 63) {
        ++ctz;
      } else {
        ++ptr;
        ctz = 0;
      }
      return *this;
    }
    inline _iterator operator++(int) {
      _iterator ret = *this;
      operator++();
      return ret;
    }
    inline _iterator& operator--() {
      if (ctz % 64 > 0) {
        --ctz;
      } else {
        --ptr;
        ctz = 63;
      }
      return *this;
    }
    inline _iterator operator--(int) {
      _iterator ret = *this;
      operator--();
      return ret;
    }
    inline _iterator& operator+=(std::ptrdiff_t d) {
      if (d < 0)
        return operator-=(-d);
      auto r = d % 64;
      if (ctz + r < 64) {
        ptr += d / 64;
        ctz += r;
      } else {
        ptr += d / 64 + 1;
        ctz = (ctz + r) - 64;
      }
      return *this;
    }
    inline _iterator operator+(std::ptrdiff_t d) const {
      return _iterator(*this) += d;
    }
    inline _iterator& operator-=(std::ptrdiff_t d) {
      if (d < 0)
        return operator+=(-d);
      auto r = d % 64;
      if (r <= ctz) {
        ptr -= d / 64;
        ctz -= r;
      } else {
        ptr -= d / 64 + 1;
        ctz = (ctz + 64 - r) - 64;
      }
      return *this;
    }
    inline _iterator operator-(std::ptrdiff_t d) const {
      return _iterator(*this) -= d;
    }
    inline reference operator[](size_t i) const {
      return *(*this + i);
    }
  };

  void range_set(size_t b, size_t e, uint64_t x) {
    if (b >= e) return;
    auto r = b % 64;
    auto w = e-b;
    auto mask = w < 64 ? (1ull << w) - 1 : ~0ull;
    assert(x <= mask);
    arr[b/64] = (arr[b/64] & ~(mask << r)) | x << r;
    if (mask + r > 64) {
      arr[b/64+1] = (arr[b/64+1] & ~(mask >> (64-r))) | x >> (64-r);
    }
  }
  uint64_t range_get(size_t b, size_t e) const {
    if (b >= e) return 0;
    assert(e-b <= 64);
    auto r = b % 64;
    auto w = e-b;
    auto mask = w < 64 ? (1ull << w) - 1 : ~0ull;
    auto x = arr[b/64] >> r;
    if (w + r > 64) 
      x |= arr[b/64+1] << (64-r);
    return x & mask;
  }
  const uint64_t& get_word(size_t wi) const {
    return arr[wi];
  }
  size_t word_size() const {
    return arr.size();
  }
  // using rank_select_type = BV<Bitmap, 64>;
};
#line 8 "include/mtl/succinct/ty.hpp"

/**
 * @brief TY: Store increasing sequence of integers.
 *            Memory needs for store nth integers O(n log d) bits 
 *            which d is max diff of consecutive elements.
*/
template<class T, class DiffType = int16_t>
class TY {
    using value_type = T;
    static constexpr auto block_size = sizeof(value_type) * 8;
    using diff_value_type = DiffType;
    static constexpr unsigned max_diff = std::numeric_limits<diff_value_type>::max();
private:
    std::vector<value_type> head;
    std::vector<diff_value_type> diff;

public:
    TY() = default;
    template<class It>
    TY(It first, It last) {
        assert(std::is_sorted(first, last));
        reserve(std::distance(first, last));
        for (auto it = first; it != last; it++) {
            push_back(*it);
        }
    }
    size_t size() const {
        return head.size() + diff.size();
    }
    bool empty() const { return size() == 0; }
    void reserve(size_t n) {
        head.reserve((n + block_size - 1) / block_size);
        diff.reserve(n / block_size * (block_size - 1) + n % block_size);
    }
    template<class... Args>
    void emplace_back(Args&&... args) {
        if (size() % block_size == 0) {
            head.emplace_back(std::forward<Args>(args)...);
        } else {
            value_type v(std::forward<Args>(args)...);
            assert(v >= head.back());
            assert(v - head.back() <= (value_type)max_diff);
            diff.push_back((diff_value_type)(v - head.back()));
        }
    }
    void push_back(const value_type& v) {
        if (size() % block_size == 0) {
            head.push_back(v);
        } else {
            assert(v >= head.back());
            assert(v - head.back() <= (value_type)max_diff);
            diff.push_back(v - head.back());
        }
    }
    void push_back(value_type&& v) {
        emplace_back(std::move(v));
    }
    value_type get(size_t i) const {
        if (i % block_size == 0) 
            return head[i / block_size];
        else 
            return head[i / block_size] + 
                   (value_type)diff[i / block_size * (block_size-1) + i % block_size - 1];
    }
    value_type operator[](size_t i) const { return get(i); }
    value_type front() const { return get(0); }
    value_type back() const { return get(size()-1); }
};
#line 7 "include/mtl/succinct/rrr.hpp"
#include <map>
#line 13 "include/mtl/succinct/rrr.hpp"

constexpr unsigned need_bits(uint64_t n) {
    return bm::bit_width(n);
}

template<unsigned N>
struct BinomialTable {
    static_assert(N < 64, 
        "Too large N for BinomialTable. N must be less than 64");
    using number_type = uint64_t;
    using binom_table_type = std::array<std::array<number_type, N+1>, N+1>;

    static constexpr binom_table_type make_binomial_table() {
        binom_table_type tb{};
        tb[0][0] = 1;
        for (size_t i = 1; i <= N; i++) {
            tb[i][0] = tb[i-1][0];
            for (size_t j = 1; j <= i; j++) 
                tb[i][j] = tb[i-1][j-1] + tb[i-1][j];
        }
        return tb;
    }
    static constexpr binom_table_type _binom_tb = make_binomial_table();
    static constexpr number_type binom(size_t n, size_t k) {
        assert(n <= N and k <= N);
        return _binom_tb[n][k];
    }
};
template<unsigned N>
constexpr typename BinomialTable<N>::binom_table_type BinomialTable<N>::_binom_tb;

template<class Def>
struct RRRTable {
    using def = Def;
    static constexpr unsigned s_size = def::s_size;
    using s_type = typename def::s_type;
    static constexpr unsigned n_bits = def::n_bits;
    using binomial_table_type = BinomialTable<s_size>;
    using number_type = typename binomial_table_type::number_type;
    static constexpr s_type get_int(unsigned n, number_type k, unsigned bits = s_size) {
        s_type res = 0;
        const auto offset = bits;
        s_type mask = ((s_type(1)<<bits)-1);
        auto nn = n;
        unsigned i = 0;
        /*
        Binary search time B = ceil(\log_2 w)
        Expected length of consecutive zeros Ez = \sum j binom(w-j, nn) / binom(w, nn), j=1..w-nn
        Expected length of consecutive ones  Eo = \sum j binom(w-j, nn-j) / binom(w, nn), j=1..nn
        Approximate simple function from Ez > B to be nn <= min(20, w-1)
        Approximate simple function from Eo > B to be nn > min(40, w)
        */
        // TODO: When nn > 40, use binary search to find length of consecutive ones
        for (; i < offset and nn > 20; i++) {
            auto w = s_size - i;
            if (nn == w) {
                res |= ((s_type(1)<<nn)-1) << i;
                return res & mask;
            }
            if (nn == w-1) {
                res |= (((s_type(1)<<w)-1) ^ (s_type(1) << k)) << i;
                return res & mask;
            }
            // Linear search
            auto binom = binomial_table_type::binom(w-1, nn);
            if (k >= binom) {
                res |= s_type(1) << i;
                k -= binom;
                nn--;
            }
        }
        for (; i < offset and nn > 1; i++) {
            auto w = s_size - i;
            if (nn == w) {
                res |= ((s_type(1)<<nn)-1) << i;
                return res & mask;
            }
            if (nn == w-1) {
                res |= (((s_type(1)<<w)-1) ^ (s_type(1) << k)) << i;
                return res & mask;
            }
            // Binary search to find length of consecutive zeros
            auto l = i, r = offset+1;
            while (l+1<r) {
                auto c = l+(r-l)/2;
                if (k < binomial_table_type::binom(s_size-c, nn))
                    l = c;
                else 
                    r = c;
            }
            if (l < offset) {
                res |= s_type(1) << l;
                k -= binomial_table_type::binom(s_size-l-1, nn);
                nn--;
            }
            i = l;
        }
        if (nn == 1) {
            res |= s_type(1) << (s_size-1-k);
            return res & mask;
        }
        if (nn == 0) 
            return res;
        if (k >= binomial_table_type::binom(s_size-offset-1, nn))
            res |= s_type(1) << offset;
        return res & ((s_type(1)<<bits)-1);
    }
    static constexpr bool get_bit(unsigned n, number_type k, unsigned offset) {
        auto nn = n;
        unsigned i = 0;
        /*
        Binary search time B = ceil(\log_2 w)
        Expected length of consecutive zeros Ez = \sum j binom(w-j, nn) / binom(w, nn), j=1..w-nn
        Expected length of consecutive ones  Eo = \sum j binom(w-j, nn-j) / binom(w, nn), j=1..nn
        Approximate simple function from Ez > B to be nn <= min(20, w-1)
        Approximate simple function from Eo > B to be nn > min(40, w)
        */
        // TODO: When nn > 40, use binary search to find length of consecutive ones
        for (; i < offset and nn > 20; i++) {
            auto w = s_size - i;
            if (nn == w) {
                return 1;
            }
            if (nn == w-1) {
                return offset != i+k;
            }
            // linear search
            auto binom = binomial_table_type::binom(w-1, nn);
            if (k >= binom) {
                k -= binom;
                nn--;
            }
        }
        for (; i < offset and nn > 1; i++) {
            auto w = s_size - i;
            if (nn == w) {
                return 1;
            }
            if (nn == w-1) {
                return offset != i+k;
            }
            // binary search
            auto l = i, r = offset+1;
            while (l+1<r) {
                auto c = l+(r-l)/2;
                if (k < binomial_table_type::binom(s_size-c, nn))
                    l = c;
                else 
                    r = c;
            }
            if (l < offset) {
                k -= binomial_table_type::binom(s_size-l-1, nn);
                nn--;
            }
            i = l;
        }
        if (nn == 1)
            return offset == s_size-1-k;
        if (nn == 0) 
            return 0;
        return k >= binomial_table_type::binom(s_size-offset-1, nn);
    }
    static constexpr number_type get_number_for_popcnt(s_type bitmap, unsigned pc) {
        number_type number = 0;
        auto m = bitmap;
        auto n = pc;
        while (m) {
            auto i = bm::ctz(m);
            number += binomial_table_type::binom(s_size-i-1, n);
            n--;
            m ^= (s_type(1)<<i);
        }
        return number;
    }
    static constexpr number_type number_size(unsigned n) {
        return binomial_table_type::binom(s_size, n);
    }
    static constexpr std::pair<unsigned, number_type> get_pc_and_number(s_type bitmap) {
        unsigned pc = bm::popcnt(bitmap);
        auto number = pc <= s_size-pc ? get_number_for_popcnt(bitmap, pc) 
                                      : (number_size(pc)-1-get_number_for_popcnt(
                                            ~bitmap & ((s_type(1)<<s_size)-1), s_size-pc));
        return std::make_pair(pc, number);
    }
    using number_bits_table_type = std::array<unsigned, s_size+1>;
    static constexpr number_bits_table_type make_number_bits_table() {
        number_bits_table_type tb{};
        for (unsigned i = 0; i <= s_size; i++) {
            tb[i] = need_bits(number_size(i)-1);
        }
        return tb;
    }
    static constexpr number_bits_table_type n_len = make_number_bits_table();
    static constexpr unsigned number_bits(unsigned n) {
        assert(n <= s_size);
        return n_len[n];
    }
};
template<class Def>
constexpr typename RRRTable<Def>::number_bits_table_type RRRTable<Def>::n_len;

template<unsigned SSize, class SType>
struct RRRDefinition {
    static constexpr unsigned s_size = SSize;
    using s_type = SType;
    static constexpr unsigned n_bits = need_bits(s_size);
};

/** 
 * @brief Succinct bit vector in memory of B(n, u) + O(u log log n / log n) bits 
 *        where u is number of bits and n is number of 1s
*/
template<
    unsigned SSize = 63,
    class SType = uint64_t,
    class MapType = std::map<size_t, SType>
    >
struct RRR {
    using def = RRRDefinition<SSize, SType>;
    using s_type = typename def::s_type;
    using rrr_table_type = RRRTable<def>;
    using map_type = MapType;
    using ty_type = TY<size_t>;

    map_type s_map;
    ty_type heads;
    Bitmap bm;

    RRR() = default;
    void set(size_t i, bool b) {
        if (b)
            s_map[i/def::s_size] |= (s_type)1<<(i%def::s_size);
        else
            s_map[i/def::s_size] &= ~((s_type)1<<(i%def::s_size));
    }
    void build() {
        size_t h = 0;
        size_t pq = 0;
        auto block_count = s_map.empty() ? 0 : std::prev(s_map.end())->first+1;
        heads.reserve(block_count);
        for (auto qm : s_map) {
            auto qidx = qm.first;
            auto mask = qm.second;
            while (pq < qidx) {
                heads.push_back(h);
                auto w = def::n_bits;
                bm.resize(h+w);
                bm.range_set(h, h+w, 0);
                h += w;
                pq++;
            }
            heads.push_back(h);
            auto np = rrr_table_type::get_pc_and_number(mask);
            auto n = np.first;
            auto p = np.second;
            assert(rrr_table_type::get_int(n, p) == mask);
            auto w = def::n_bits + rrr_table_type::number_bits(n);
            bm.resize(h+w);
            bm.range_set(h, h+def::n_bits, n);
            bm.range_set(h+def::n_bits, h+w, p);
            assert(bm.range_get(h, h+def::n_bits) == n);
            assert(bm.range_get(h+def::n_bits, h+w) == p);
            h += w;
            pq++;
        }
        s_map.clear();
    }
    void move_or_build(RRR&& src) {
        *this = std::move(src);
    }
    void move_or_build(const Bitmap& bm) {
        for (size_t i = 0; i < bm.size(); i += def::s_size) {
            auto w = bm.range_get(i, std::min(i+def::s_size, bm.size()));
            if (w or i+def::s_size >= bm.size()) s_map.emplace(i/def::s_size, w);
        }
        build();
    }
    bool get_bit(size_t si, unsigned off) const {
        if (si >= heads.size())
            return false;
        auto a = heads.get(si);
        auto b = a+def::n_bits;
        auto n = bm.range_get(a, b);
        auto p = bm.range_get(b, b+rrr_table_type::number_bits(n));
        return rrr_table_type::get_bit(n, p, off);
    }
    s_type get_mask(size_t si) const {
        if (si >= heads.size())
            return 0;
        auto a = heads.get(si);
        auto b = a+def::n_bits;
        auto n = bm.range_get(a, b);
        auto p = bm.range_get(b, b+rrr_table_type::number_bits(n));
        return rrr_table_type::get_int(n, p);
    }
    uint64_t get_word(size_t si) const {
        return get_mask(si);
    }
    size_t word_size() const {
        return heads.size();
    }
    size_t size() const {
        return heads.size() * def::s_size;
    }
    bool empty() const {
        return size() == 0;
    }

    bool get(size_t i) const {
        return get_bit(i/def::s_size, i%def::s_size);
    }

};
#line 5 "include/mtl/succinct/traits.hpp"

template<class T>
struct RankSelectTraits : std::false_type {};

template<>
struct RankSelectTraits<Bitmap> {
  using rank_select_type = BV<Bitmap, 64>;
};

template<unsigned SSize, class SType, class MapType>
struct RankSelectTraits<RRR<SSize, SType, MapType>> {
    using rank_select_type = BV<RRR<SSize, SType, MapType>, SSize>;
};
#line 10 "include/mtl/succinct/bit_vector.hpp"

struct BitVector {
  using bitmap_type = Bitmap;
  bitmap_type bm;
  using rs_type = typename RankSelectTraits<bitmap_type>::rank_select_type;
  rs_type rs_support;
  // std::vector<uint64_t> _r, _s, _zs;

  BitVector() = default;
  explicit BitVector(size_t size) : bm(size) {}
  BitVector(size_t size, bool bit) : bm(size, bit) {}
  BitVector(const BitVector& rhs) : bm(rhs.bm), rs_support(rhs.rs_support) {
    rs_support.set_ptr(&bm);
  }
  BitVector& operator=(const BitVector& rhs) {
    bm = rhs.bm;
    rs_support = rhs.rs_support;
    rs_support.set_ptr(&bm);
    return *this;
  }
  BitVector(BitVector&& rhs) noexcept : 
    bm(std::move(rhs.bm)), 
    rs_support(std::move(rhs.rs_support)) {
    rs_support.set_ptr(&bm);
  }
  BitVector& operator=(BitVector&& rhs) noexcept {
    bm = std::move(rhs.bm);
    rs_support = std::move(rhs.rs_support);
    rs_support.set_ptr(&bm);
    return *this;
  }
  template<typename It>
  BitVector(It begin, It end) : bm(begin, end) {
    build();
  }
  size_t size() const { return bm.size(); }
  bool empty() const { return bm.empty(); }
  void push_back(bool bit) { bm.push_back(bit); }
  void resize(size_t new_size, bool bit = false) { bm.resize(new_size, bit); }
  void assign(size_t new_size, bool bit) { bm.assign(new_size, bit); }
  void reserve(size_t reserved_size) { bm.reserve(reserved_size); }
  bitmap_type& bitmap() { return bm; }
  const bitmap_type& bitmap() const { return bm; }
  bitmap_type::const_reference operator[](size_t i) const { return bm[i]; }
  bitmap_type::reference operator[](size_t i) { return bm[i]; }
  bitmap_type::const_iterator begin() const { return bm.begin(); }
  bitmap_type::const_iterator end() const { return bm.end(); }
  bitmap_type::iterator begin() { return bm.begin(); }
  bitmap_type::iterator end() { return bm.end(); }
  bitmap_type::const_iterator cbegin() const { return bm.cbegin(); }
  bitmap_type::const_iterator cend() const { return bm.cend(); }

  void build() {
    rs_support.build(&bm);
  }

  inline size_t rank(size_t i) const {
    return rs_support.rank1(i);
  }
  size_t rank1(size_t i) const {
    return rs_support.rank1(i);
  }
  size_t rank0(size_t i) const {
    return rs_support.rank0(i);
  }

  template<bool B>
  size_t select(size_t n) const {
    return rs_support.select<B>(n);
  }
  size_t select1(size_t n) const {
    return rs_support.select<1>(n);
  }
  size_t select0(size_t n) const {
    return rs_support.select<0>(n);
  }
};
#line 10 "include/mtl/succinct/wavelet_tree.hpp"

template<typename T>
struct WaveletTree {
  static constexpr unsigned H = 64 - bm::clz(std::numeric_limits<T>::max());
  size_t n,h;
  BitVector B;
  WaveletTree() = default;
  template<typename It>
  WaveletTree(It begin, It end)
    : n(std::distance(begin, end)), h(64 - bm::clz(*max_element(begin, end)))
  {
    using trait = std::iterator_traits<It>;
    static_assert(std::is_base_of<std::input_iterator_tag, typename trait::iterator_category>::value, "");
    static_assert(std::is_convertible<typename trait::value_type, T>::value, "");
    assert(*min_element(begin, end) >= 0);

    B.assign(h * n, false);
    std::vector<T> S(begin, end);
    std::vector<size_t> D = {0,n}, nd;
    auto bit = B.begin();
    std::queue<T> sz,so;
    for (int k = h-1; k > 0; k--) {
      for (size_t i = 0; i < n; i++, ++bit)
        *bit = (S[i] & (1ull<<k)) != 0;
      nd.clear();
      nd.push_back(0);
      for (size_t d = 0; d < D.size()-1; ++d) {
        size_t l = D[d], r = D[d+1];
        for (size_t i = l; i < r; ++i)
          if ((S[i] & (1ull<<k)) == 0)
            sz.push(S[i]);
          else
            so.push(S[i]);
        int zs = sz.size();
        {
          auto i = l;
          while (!sz.empty()) {
            S[i++] = sz.front();
            sz.pop();
          }
          while (!so.empty()) {
            S[i++] = so.front();
            so.pop();
          }
          assert(i == r);
        }
        if (zs)
          nd.push_back(l + zs);
        if (l + zs < r)
          nd.push_back(r);
      }
      std::swap(D, nd);
    }
    for (size_t i = 0; i < n; i++, ++bit)
      *bit = (S[i] & 1ull) != 0;
    B.build();
  }

  std::pair<size_t,size_t> child(bool b, size_t l, size_t r) {
    auto os = B.rank(r) - B.rank(l);
    auto zs = r-l - os;
    return !b ? std::make_pair(l + n, l + zs + n)
              : std::make_pair(l + zs + n, r + n);
  }

  T get(size_t i) const {
    size_t l = 0, r = n;
    T ret = 0;
    auto j = i;
    for (int k = h-1; k > 0; k--) {
      auto rl = B.rank(l),
          rj = B.rank(l + j),
          rr = B.rank(r);
      auto zs = r - l - (rr - rl);
      if (B[l + j]) {
        ret |= 1ull<<k;
        j = rj - rl;
        l += n + zs;
        r += n;
      } else {
        j = (l+j - rj) - (l - rl);
        l += n;
        r = l + zs;
      }
    }
    if (B[l + j])
      ret |= 1ull;
    return ret;
  }

  size_t rank(T c, size_t i) const {
    size_t l = 0, r = n;
    auto j = i;
    for (int k = h-1; k >= 0; k--) {
      auto rl = B.rank(l), rj = B.rank(l + j), rr = B.rank(r);
      auto zs = r - l - (rr - rl);
      if (c & (1ull<<k)) {
        j = rj - rl;
        l += n + zs;
        r += n;
      } else {
        j = (l+j - rj) - (l - rl);
        l += n;
        r = l + zs;
      }
    }
    return j;
  }

  size_t rank_lower(T c, size_t i) const {
    size_t l = 0, r = n;
    auto j = i;
    size_t ret = 0;
    for (int k = h-1; k >= 0; k--) {
      auto rl = B.rank(l), rj = B.rank(l+j), rr = B.rank(r);
      auto zs = r - l - (rr - rl);
      if (c & (1ull << k)) {
        ret += (l+j - rj) - (l - rl);
        j = rj - rl;
        l += n + zs;
        r += n;
      } else {
        j = (l+j - rj) - (l - rl);
        l += n;
        r = l + zs;
      }
    }
    return ret;
  }

  std::tuple<size_t, size_t, size_t> rank_3way(T c, size_t i) const {
    size_t lt = 0, gt = 0;
    size_t l = 0, r = n, j = i;
    for (int k = h-1; k >= 0; k--) {
      auto rl = B.rank(l), rj = B.rank(l+j), rr = B.rank(r);
      auto zs = r - l - (rr - rl);
      if (c & (1ull << k)) {
        lt += (l+j - rj) - (l - rl);
        j = rj - rl;
        l += n + zs;
        r += n;
      } else {
        gt += rj - rl;
        j = (l+j - rj) - (l - rl);
        l += n;
        r = l + zs;
      }
    }
    return std::make_tuple(lt, j, gt);
  }

  std::array<int, H> ls;
  size_t select(T c, size_t i) { // 0-indexed
    size_t l = 0, r = n;
    for (int k = h-1; k >= 0; k--) {
      ls[k] = l;
      auto rl = B.rank(l), rr = B.rank(r);
      auto zs = r - l - (rr - rl);
      if (c & (1ull<<k)) {
        l += n + zs;
        r += n;
      } else {
        l += n;
        r = l + zs;
      }
    }
    if (i >= r - l)
      return n; // Not found
    auto j = i;
    for (int k = 0; k < (int)h; k++) {
      auto rl = B.rank(ls[k]);
      if (c & (1ull<<k)) {
        r = rl;
        j = B.select<1>(j + r) - ls[k];
      } else {
        r = ls[k] - rl;
        j = B.select<0>(j + r) - ls[k];
      }
    }
    return j;
  }

 private:
  void _enumerate(size_t l, size_t r, size_t a, size_t b, T c,
                  std::vector<std::pair<T, size_t>>& enm) const {
    if (b-a == 0)
      return;
    if (l >= n*h) {
      enm.emplace_back(c, b-a);
      return;
    }
    auto rl = B.rank(l),
        rr = B.rank(r),
        ra = B.rank(l+a) - rl,
        rb = B.rank(l+b) - rl;
    auto zs = (r - rr) - (l - rl);
    _enumerate(l + n, l + n + zs, a - ra, b - rb, c, enm);
    auto k = h-1 - l/n;
    _enumerate(l + n + zs, r + n, ra, rb, c | (1ull << k), enm);
  }
 public:
  std::vector<std::pair<T, size_t>> enumerate(size_t l, size_t r) const {
    std::vector<std::pair<T, size_t>> enm;
    _enumerate(0, n, l, r, T{0}, enm);
    return enm;
  }

 private:
  std::pair<size_t, size_t> child_tie(bool bit, size_t l, size_t r) const {
    auto zs = (r-l) - (B.rank(r) - B.rank(l));
    if (!bit)
      return std::make_pair(l+n, l+n+zs);
    else
      return std::make_pair(l+n+zs, r+n);
  }

 public:
  // Get frequency of values which (x <= value < y) in S[l,r).
  size_t range_freq(size_t l, size_t r, T x, T y) const {
    size_t freq = 0;
    std::queue<std::tuple<size_t, size_t, T>> qs;
    qs.emplace(l,r,0,n,T(0));
    while (!qs.empty(0)) {
      size_t i,j,_l,_r;
      T c;
      std::tie(i,j,_l,_r,c) = qs.front(); qs.pop();
      if (i == j)
        continue;
      size_t level = i/n;
      int shift = h-1-level;
      T clo = c, chi = c | ((1ull<<(shift+1))-1);
      if (chi < x or y <= clo)
        continue;
      if (x <= clo and chi < y) {
        freq += j - i;
        continue;
      }
      assert(level < h);
      size_t rl = B.rank(_l), ri = B.rank(_l+i), rj = B.rank(_l+j), rr = B.rank(_r);
      size_t zs = (_r - rr) - (_l - rl);
      qs.emplace((_l+i - ri) - (_l - rl), (_l+j - rj) - (_l - rl),
                 _l+n, _l+n+zs, c);
      qs.emplace(ri - rl, rj - rl,
                 _l+n+zs, _r+n, c|(1ull<<shift));
    }
    return freq;
  }
};
#line 3 "test/succinct/wavelet_tree_test.cpp"
#include <bits/stdc++.h>
using namespace std;

int main() {
  const int n = 1e6;
  std::vector<char> S(n);
  std::array<int, 26> cnt{};
  std::array<std::vector<int>, 26> rank, select, rank_c;
  for (int i = 0; i < 26; i++) {
    rank[i].resize(n+1);
    rank_c[i].resize(n+1);
  }
  for (int i = 0; i < n; i++) {
    int c = rand()%26;
    S[i] = c;
    for (int j = 0; j < 26; j++) {
      rank[j][i] = cnt[j];
      if (j) rank_c[j][i] = rank_c[j-1][i] + cnt[j-1];
    }
    cnt[c]++;
    select[c].push_back(i);
  }
  for (int i = 0; i < 26; i++) {
    rank[i][n] = cnt[i];
    if (i) rank_c[i][n] = rank_c[i-1][n] + cnt[i-1];
    select[i].push_back(n);
  }

  WaveletTree<char> wm(S.begin(), S.end());
  // access
  for (int i = 0; i < n; i++) {
    char v = wm.get(i);
    if (v != S[i]) {
      cout << "Failed access "<<i<<" wm.get: "<<char(v+'a')<<" != S: "<<char(S[i]+'a')<<endl;
      return 1;
    }
  }
  // rank
  for (int i = 0; i <= n; i++) {
    for (int c = 0; c < 26; c++) {
      int v = wm.rank(c, i);
      if (v != rank[c][i]) {
        cout << "Failed rank "<<char(c+'a')<<", "<<i<<" wm.rank: "<<v<<" != rank: "<<rank[c][i]<<endl;
        return 1;
      }
    }
  }
  // select
  std::array<int, 26> selected{};
  for (int i = 0; i < n; i++) {
    int c = S[i];
    int k = selected[c]++;
    int v = wm.select(c, k);
    if (v != select[c][k] or v != i) {
      cout << "Failed select "<<char(S[i]+'a')<<", "<<k<<" wm.select: "<<v<<" != select: "<<select[c][k]<<endl;
      return 1;
    }
  }
  for (int c = 0; c < 26; c++) {
    int k = selected[c];
    int v = wm.select(c, k);
    if (v != select[c][k] or v != n) {
      cout << "Failed select "<<char(c + 'a')<<", "<<k<<" wm.select: "<<v<<" != select: "<<select[c][k]<<endl;
      return 1;
    }
  }
  // rank_c
  for (int i = 0; i <= n; i++) {
    for (int c = 0; c < 26; c++) {
      int v = wm.rank_lower(c, i);
      if (v != rank_c[c][i]) {
        cout << "Failed rank_c "<<char(c+'a')<<", "<<i<<" wm.rank_lower: "<<v<<" != rank_c: "<<rank_c[c][i]<<endl;
        return 1;
      }
    }
  }
  // enumerate
  const int m = std::min(n, (int)cbrt(n*6));
  for (int l = 0; l < m; l++) {
    for (int r = l+1; r <= m; r++) {
      std::array<int, 26> enm{};
      for (int c = 0; c < 26; c++) enm[c] = rank[c][r] - rank[c][l];
      auto _v = wm.enumerate(l, r);
      std::array<int, 26> v{};
      for (auto p : _v) v[p.first] = p.second;
      for (int c = 0; c < 26; c++) {
        if (v[c] != enm[c]) {
          cout << "Failed enumerate "<<l<<", "<<r<<", "<<char(c+'a')<<" wm.enumerate: "<<v[c]<<" != "<<enm[c]<<endl;
          return 1;
        }
      }
    }
  }
  std::cout << "OK" << std::endl;
}
Back to top page