This documentation is automatically generated by competitive-verifier/competitive-verifier
#define PROBLEM "https://judge.yosupo.jp/problem/system_of_linear_equations"
#include "include/mtl/matrix.hpp"
#include "include/mtl/modular.hpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modular998244353;
int main() {
int n,m; cin>>n>>m;
Matrix<mint,500,500> A;
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) {
cin>>A[i][j];
}
Matrix<mint,500,1> b;
for (int i = 0; i < n; i++) {
cin>>b[i][0];
}
auto [rank,ans_basis,suc] = A.solve(b, n, m);
if (!suc) {
cout << -1 << endl;
return 0;
}
cout << rank << endl;
for (int i = 0; i < m; i++) {
cout << ans_basis[0][i] << ' ';
}
cout << endl;
for (int i = 0; i < (int)rank; i++) {
for (int j = 0; j < m; j++) {
cout << ans_basis[i+1][j] << ' ';
}
cout << endl;
}
}
#line 1 "test/yosupo/matrix/system_of_linear_equations.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/system_of_linear_equations"
#line 2 "include/mtl/matrix.hpp"
#include <cstddef>
#include <array>
#include <vector>
#include <numeric>
#include <algorithm>
#include <cmath>
#include <tuple>
#include <cassert>
#include <iostream>
template <typename TYPE, unsigned ROW, unsigned COLUMN>
class Matrix {
public:
using value_type = TYPE;
static constexpr unsigned R = ROW;
static constexpr unsigned C = COLUMN;
using row_type = std::array<value_type, COLUMN>;
using matrix_type = std::array<row_type, ROW>;
private:
matrix_type mat_;
public:
Matrix() : mat_({}) {}
Matrix(std::initializer_list<row_type> list) {
size_t i = 0;
for (auto &l : list) {
mat_[i] = l;
i++;
}
}
static constexpr Matrix I() {
Matrix ret;
auto d = std::min(R, C);
for (unsigned i = 0; i < d; i++) {
ret[i][i] = 1;
}
return ret;
}
Matrix<value_type, C, R> T() const {
Matrix<value_type, C, R> ret;
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
ret[j][i] = mat_[i][j];
}
}
return ret;
}
const row_type &operator[](size_t i) const { return mat_[i]; }
row_type &operator[](size_t i) { return mat_[i]; }
bool operator==(const Matrix &r) const {
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
if (mat_[i][j] != r[i][j])
return false;
}
}
return true;
}
bool operator!=(const Matrix &r) const { return !(*this == r); }
Matrix &operator+=(const Matrix &r) {
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
mat_[i][j] += r[i][j];
}
}
return *this;
}
Matrix operator+(const Matrix &r) const {
return Matrix(*this) += r;
}
Matrix operator-() const {
Matrix ret;
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
ret[i][j] = -mat_[i][j];
}
}
return ret;
}
Matrix &operator-=(const Matrix &r) {
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
mat_[i][j] = -r[i][j];
}
}
return *this;
}
Matrix operator-(const Matrix &r) const {
return Matrix(*this) -= r;
}
friend Matrix operator*(const value_type &l, const Matrix &r) {
Matrix ret;
for (unsigned i = 0; i < R; i++) {
for (unsigned j = 0; j < C; j++) {
ret[i][j] = l * r[i][j];
}
}
return ret;
}
template <unsigned _COL>
Matrix<value_type, R, _COL>
operator*(const Matrix<value_type, C, _COL> &r) const {
Matrix<value_type, R, _COL> ret;
for (unsigned i = 0; i < R; i++) {
for (unsigned k = 0; k < C; k++) {
auto mik = mat_[i][k];
for (unsigned j = 0; j < _COL; j++) {
ret[i][j] += mik * r[k][j];
}
}
}
return ret;
}
Matrix &operator*=(const Matrix &r) { return *this = *this * r; }
Matrix pow(unsigned long long k) const {
assert(R == C);
Matrix u = *this;
Matrix t = Matrix::I();
while (k) {
if (k & 1) {
t *= u;
}
u *= u;
k >>= 1;
}
return t;
}
friend Matrix pow(const Matrix &mat, unsigned long long k) {
return mat.pow(k);
}
/**
* Return Determinant of matrix
* using Gaussian elimination
*/
value_type det(unsigned n = R) const {
value_type ret = 1;
auto x = *this;
for (unsigned i = 0; i < n; i++) {
unsigned index = i;
while (index < n and x[index][i] == value_type(0)) {
++index;
}
if (index == n) {
return 0;
}
if (index != i) {
std::swap(x[index], x[i]);
ret = -ret;
}
auto ixii = value_type(1) / x[i][i];
for (unsigned j = i + 1; j < n; j++) {
value_type factor = x[j][i] * ixii;
for (unsigned k = i + 1; k < n; k++) {
x[j][k] -= factor * x[i][k];
}
}
}
for (unsigned i = 0; i < n; i++) {
ret *= x[i][i];
}
return ret;
}
// Return rank of left matrix
unsigned gaussian_elimination(unsigned row=R, unsigned l_column=C, unsigned r_column=0,
std::vector<unsigned>* principal = nullptr) {
auto w = l_column+r_column;
unsigned rank = 0;
if (principal) principal->resize(row+1, l_column);
for (unsigned i = 0; i < l_column and rank < row; i++) {
unsigned index = row;
value_type zero = 0;
for (unsigned j = rank; j < row; j++)
if (mat_[j][i] != zero) {
index = j;
break;
}
if (index == row)
continue;
if (index != rank)
std::swap(mat_[index], mat_[rank]);
if (principal) (*principal)[rank] = i;
auto ixii = value_type(1) / mat_[rank][i];
mat_[rank][i] = 1;
for (unsigned j = i + 1; j < w; j++)
mat_[rank][j] *= ixii;
for (unsigned j = 0; j < row; j++) if (j != rank) {
value_type factor = mat_[j][i];
mat_[j][i] = zero;
for (unsigned k = i + 1; k < w; k++) {
mat_[j][k] -= factor * mat_[rank][k];
}
}
++rank;
}
return rank;
}
using system_type = Matrix<value_type, R, C+1>;
using system_result_matrix = Matrix<value_type, R+1, C>;
std::tuple<unsigned, system_result_matrix, bool>
solve(Matrix<value_type, R, 1>& b, unsigned row=R, unsigned column=C) const {
// x = [A|b]
system_type x;
for (unsigned i = 0; i < row; i++) {
for (unsigned j = 0; j < column; j++) {
x[i][j] = mat_[i][j];
}
x[i][column] = b[i][0];
}
// x = [I|ans] ideally
std::vector<unsigned> col;
auto rank = x.gaussian_elimination(row, column, 1, &col);
for (unsigned i = rank; i < row; i++) if (x[i][column] != value_type(0)) {
return std::make_tuple(column-rank, system_result_matrix{}, false);
}
// { x(ans) }
// { basis }
system_result_matrix res;
for (unsigned i = 0; i < rank; i++)
res[0][col[i]] = x[i][column];
unsigned t = 0;
col[rank] = column;
for (; t < col[0]; t++)
res[t+1][t] = 1;
for (unsigned i = 0; i < rank; i++) {
for (unsigned c = col[i]+1; c < col[i+1]; c++) {
for (unsigned j = 0; j <= i; j++) {
res[t+1][col[j]] = -x[j][c];
}
res[t+1][c] = 1;
t++;
}
}
assert(t == column-rank);
return std::make_tuple(column-rank, res, true);
}
std::pair<Matrix, bool> inv(unsigned n=R) const {
// x = [A|I]
Matrix<value_type, R, C*2> x;
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < n; j++) {
x[i][j] = mat_[i][j];
}
x[i][n+i] = 1;
}
// x = [I|A^-1]
if (x.gaussian_elimination(n, n, n) != n) {
return std::make_pair(Matrix{}, false);
}
Matrix ret;
for (unsigned i = 0; i < n; i++) {
for (unsigned j = 0; j < n; j++) {
ret[i][j] = x[i][n+j];
}
}
return std::make_pair(ret, true);
}
};
#line 2 "include/mtl/bit_manip.hpp"
#include <cstdint>
#line 4 "include/mtl/bit_manip.hpp"
#if __cplusplus >= 202002L
#ifndef MTL_CPP20
#define MTL_CPP20
#endif
#include <bit>
#endif
namespace bm {
/// Count 1s for each 8 bits
inline constexpr uint64_t popcnt_e8(uint64_t x) {
x = (x & 0x5555555555555555) + ((x>>1) & 0x5555555555555555);
x = (x & 0x3333333333333333) + ((x>>2) & 0x3333333333333333);
x = (x & 0x0F0F0F0F0F0F0F0F) + ((x>>4) & 0x0F0F0F0F0F0F0F0F);
return x;
}
/// Count 1s
inline constexpr unsigned popcnt(uint64_t x) {
#ifdef MTL_CPP20
return std::popcount(x);
#else
return (popcnt_e8(x) * 0x0101010101010101) >> 56;
#endif
}
/// Alias to mtl::popcnt(x)
constexpr unsigned popcount(uint64_t x) {
return popcnt(x);
}
/// Count trailing 0s. s.t. *11011000 -> 3
inline constexpr unsigned ctz(uint64_t x) {
#ifdef MTL_CPP20
return std::countr_zero(x);
#else
return popcnt((x & (-x)) - 1);
#endif
}
/// Alias to mtl::ctz(x)
constexpr unsigned countr_zero(uint64_t x) {
return ctz(x);
}
/// Count trailing 1s. s.t. *11011011 -> 2
inline constexpr unsigned cto(uint64_t x) {
#ifdef MTL_CPP20
return std::countr_one(x);
#else
return ctz(~x);
#endif
}
/// Alias to mtl::cto(x)
constexpr unsigned countr_one(uint64_t x) {
return cto(x);
}
inline constexpr unsigned ctz8(uint8_t x) {
return x == 0 ? 8 : popcnt_e8((x & (-x)) - 1);
}
/// [00..0](8bit) -> 0, [**..*](not only 0) -> 1
inline constexpr uint8_t summary(uint64_t x) {
constexpr uint64_t hmask = 0x8080808080808080ull;
constexpr uint64_t lmask = 0x7F7F7F7F7F7F7F7Full;
auto a = x & hmask;
auto b = x & lmask;
b = hmask - b;
b = ~b;
auto c = (a | b) & hmask;
c *= 0x0002040810204081ull;
return uint8_t(c >> 56);
}
/// Extract target area of bits
inline constexpr uint64_t bextr(uint64_t x, unsigned start, unsigned len) {
uint64_t mask = len < 64 ? (1ull<<len)-1 : 0xFFFFFFFFFFFFFFFFull;
return (x >> start) & mask;
}
/// 00101101 -> 00111111 -count_1s-> 6
inline constexpr unsigned log2p1(uint8_t x) {
if (x & 0x80)
return 8;
uint64_t p = uint64_t(x) * 0x0101010101010101ull;
p -= 0x8040201008040201ull;
p = ~p & 0x8080808080808080ull;
p = (p >> 7) * 0x0101010101010101ull;
p >>= 56;
return p;
}
/// 00101100 -mask_mssb-> 00100000 -to_index-> 5
inline constexpr unsigned mssb8(uint8_t x) {
assert(x != 0);
return log2p1(x) - 1;
}
/// 00101100 -mask_lssb-> 00000100 -to_index-> 2
inline constexpr unsigned lssb8(uint8_t x) {
assert(x != 0);
return popcnt_e8((x & -x) - 1);
}
/// Count leading 0s. 00001011... -> 4
inline constexpr unsigned clz(uint64_t x) {
#ifdef MTL_CPP20
return std::countl_zero(x);
#else
if (x == 0)
return 64;
auto i = mssb8(summary(x));
auto j = mssb8(bextr(x, 8 * i, 8));
return 63 - (8 * i + j);
#endif
}
/// Alias to mtl::clz(x)
constexpr unsigned countl_zero(uint64_t x) {
return clz(x);
}
/// Count leading 1s. 11110100... -> 4
inline constexpr unsigned clo(uint64_t x) {
#ifdef MTL_CPP20
return std::countl_one(x);
#else
return clz(~x);
#endif
}
/// Alias to mtl::clo(x)
constexpr unsigned countl_one(uint64_t x) {
return clo(x);
}
inline constexpr unsigned clz8(uint8_t x) {
return x == 0 ? 8 : 7 - mssb8(x);
}
inline constexpr uint64_t bit_reverse(uint64_t x) {
x = ((x & 0x00000000FFFFFFFF) << 32) | ((x & 0xFFFFFFFF00000000) >> 32);
x = ((x & 0x0000FFFF0000FFFF) << 16) | ((x & 0xFFFF0000FFFF0000) >> 16);
x = ((x & 0x00FF00FF00FF00FF) << 8) | ((x & 0xFF00FF00FF00FF00) >> 8);
x = ((x & 0x0F0F0F0F0F0F0F0F) << 4) | ((x & 0xF0F0F0F0F0F0F0F0) >> 4);
x = ((x & 0x3333333333333333) << 2) | ((x & 0xCCCCCCCCCCCCCCCC) >> 2);
x = ((x & 0x5555555555555555) << 1) | ((x & 0xAAAAAAAAAAAAAAAA) >> 1);
return x;
}
/// Check if x is power of 2. 00100000 -> true, 00100001 -> false
constexpr bool has_single_bit(uint64_t x) noexcept {
#ifdef MTL_CPP20
return std::has_single_bit(x);
#else
return x != 0 && (x & (x - 1)) == 0;
#endif
}
/// Bit width needs to represent x. 00110110 -> 6
constexpr int bit_width(uint64_t x) noexcept {
#ifdef MTL_CPP20
return std::bit_width(x);
#else
return 64 - clz(x);
#endif
}
/// Ceil power of 2. 00110110 -> 01000000
constexpr uint64_t bit_ceil(uint64_t x) {
#ifdef MTL_CPP20
return std::bit_ceil(x);
#else
if (x == 0) return 1;
return 1ull << bit_width(x - 1);
#endif
}
/// Floor power of 2. 00110110 -> 00100000
constexpr uint64_t bit_floor(uint64_t x) {
#ifdef MTL_CPP20
return std::bit_floor(x);
#else
if (x == 0) return 0;
return 1ull << (bit_width(x) - 1);
#endif
}
} // namespace bm
#line 5 "include/mtl/modular.hpp"
template <int MOD>
class Modular {
private:
unsigned int val_;
public:
static constexpr unsigned int mod() { return MOD; }
template<class T>
static constexpr unsigned int safe_mod(T v) {
auto x = (long long)(v%(long long)mod());
if (x < 0) x += mod();
return (unsigned int) x;
}
constexpr Modular() : val_(0) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && std::is_unsigned<T>::value
> * = nullptr>
constexpr Modular(T v) : val_(v%mod()) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && !std::is_unsigned<T>::value
> * = nullptr>
constexpr Modular(T v) : val_(safe_mod(v)) {}
constexpr unsigned int val() const { return val_; }
constexpr Modular& operator+=(Modular x) {
val_ += x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr Modular operator-() const { return {mod() - val_}; }
constexpr Modular& operator-=(Modular x) {
val_ += mod() - x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr Modular& operator*=(Modular x) {
auto v = (long long) val_ * x.val();
if (v >= mod()) v %= mod();
val_ = v;
return *this;
}
constexpr Modular pow(long long p) const {
assert(p >= 0);
Modular t = 1;
Modular u = *this;
while (p) {
if (p & 1)
t *= u;
u *= u;
p >>= 1;
}
return t;
}
friend constexpr Modular pow(Modular x, long long p) {
return x.pow(p);
}
constexpr Modular inv() const { return pow(mod()-2); }
constexpr Modular& operator/=(Modular x) { return *this *= x.inv(); }
constexpr Modular operator+(Modular x) const { return Modular(*this) += x; }
constexpr Modular operator-(Modular x) const { return Modular(*this) -= x; }
constexpr Modular operator*(Modular x) const { return Modular(*this) *= x; }
constexpr Modular operator/(Modular x) const { return Modular(*this) /= x; }
constexpr Modular& operator++() { return *this += 1; }
constexpr Modular operator++(int) { Modular c = *this; ++(*this); return c; }
constexpr Modular& operator--() { return *this -= 1; }
constexpr Modular operator--(int) { Modular c = *this; --(*this); return c; }
constexpr bool operator==(Modular x) const { return val() == x.val(); }
constexpr bool operator!=(Modular x) const { return val() != x.val(); }
constexpr bool is_square() const {
return pow((mod()-1)/2) == 1;
}
/**
* Return x s.t. x * x = a mod p
* reference: https://zenn.dev/peria/articles/c6afc72b6b003c
*/
constexpr Modular sqrt() const {
if (!is_square())
throw std::runtime_error("not square");
auto mod_eight = mod() % 8;
if (mod_eight == 3 || mod_eight == 7) {
return pow((mod()+1)/4);
} else if (mod_eight == 5) {
auto x = pow((mod()+3)/8);
if (x * x != *this)
x *= Modular(2).pow((mod()-1)/4);
return x;
} else {
Modular d = 2;
while (d.is_square())
d += 1;
auto t = mod()-1;
int s = bm::ctz(t);
t >>= s;
auto a = pow(t);
auto D = d.pow(t);
int m = 0;
Modular dt = 1;
Modular du = D;
for (int i = 0; i < s; i++) {
if ((a*dt).pow(1u<<(s-1-i)) == -1) {
m |= 1u << i;
dt *= du;
}
du *= du;
}
return pow((t+1)/2) * D.pow(m/2);
}
}
friend std::ostream& operator<<(std::ostream& os, const Modular& x) {
return os << x.val();
}
friend std::istream& operator>>(std::istream& is, Modular& x) {
return is >> x.val_;
}
};
using Modular998244353 = Modular<998244353>;
using Modular1000000007 = Modular<(int)1e9+7>;
template<int Id=0>
class DynamicModular {
private:
static unsigned int mod_;
unsigned int val_;
public:
static unsigned int mod() { return mod_; }
static void set_mod(unsigned int m) { mod_ = m; }
template<class T>
static constexpr unsigned int safe_mod(T v) {
auto x = (long long)(v%(long long)mod());
if (x < 0) x += mod();
return (unsigned int) x;
}
constexpr DynamicModular() : val_(0) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && std::is_unsigned<T>::value
> * = nullptr>
constexpr DynamicModular(T v) : val_(v%mod()) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && !std::is_unsigned<T>::value
> * = nullptr>
constexpr DynamicModular(T v) : val_(safe_mod(v)) {}
constexpr unsigned int val() const { return val_; }
constexpr DynamicModular& operator+=(DynamicModular x) {
val_ += x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr DynamicModular operator-() const { return {mod() - val_}; }
constexpr DynamicModular& operator-=(DynamicModular x) {
val_ += mod() - x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr DynamicModular& operator*=(DynamicModular x) {
auto v = (long long) val_ * x.val();
if (v >= mod()) v %= mod();
val_ = v;
return *this;
}
constexpr DynamicModular pow(long long p) const {
assert(p >= 0);
DynamicModular t = 1;
DynamicModular u = *this;
while (p) {
if (p & 1)
t *= u;
u *= u;
p >>= 1;
}
return t;
}
friend constexpr DynamicModular pow(DynamicModular x, long long p) {
return x.pow(p);
}
// TODO: implement when mod is not prime
constexpr DynamicModular inv() const { return pow(mod()-2); }
constexpr DynamicModular& operator/=(DynamicModular x) { return *this *= x.inv(); }
constexpr DynamicModular operator+(DynamicModular x) const { return DynamicModular(*this) += x; }
constexpr DynamicModular operator-(DynamicModular x) const { return DynamicModular(*this) -= x; }
constexpr DynamicModular operator*(DynamicModular x) const { return DynamicModular(*this) *= x; }
constexpr DynamicModular operator/(DynamicModular x) const { return DynamicModular(*this) /= x; }
constexpr DynamicModular& operator++() { return *this += 1; }
constexpr DynamicModular operator++(int) { DynamicModular c = *this; ++(*this); return c; }
constexpr DynamicModular& operator--() { return *this -= 1; }
constexpr DynamicModular operator--(int) { DynamicModular c = *this; --(*this); return c; }
constexpr bool operator==(DynamicModular x) const { return val() == x.val(); }
constexpr bool operator!=(DynamicModular x) const { return val() != x.val(); }
constexpr bool is_square() const {
return val() == 0 or pow((mod()-1)/2) == 1;
}
/**
* Return x s.t. x * x = a mod p
* reference: https://zenn.dev/peria/articles/c6afc72b6b003c
*/
constexpr DynamicModular sqrt() const {
// assert mod is prime
if (!is_square())
throw std::runtime_error("not square");
if (val() < 2)
return val();
auto mod_eight = mod() % 8;
if (mod_eight == 3 || mod_eight == 7) {
return pow((mod()+1)/4);
} else if (mod_eight == 5) {
auto x = pow((mod()+3)/8);
if (x * x != *this)
x *= DynamicModular(2).pow((mod()-1)/4);
return x;
} else {
DynamicModular d = 2;
while (d.is_square())
++d;
auto t = mod()-1;
int s = bm::ctz(t);
t >>= s;
auto a = pow(t);
auto D = d.pow(t);
int m = 0;
DynamicModular dt = 1;
DynamicModular du = D;
for (int i = 0; i < s; i++) {
if ((a*dt).pow(1u<<(s-1-i)) == -1) {
m |= 1u << i;
dt *= du;
}
du *= du;
}
return pow((t+1)/2) * D.pow(m/2);
}
}
friend std::ostream& operator<<(std::ostream& os, const DynamicModular& x) {
return os << x.val();
}
friend std::istream& operator>>(std::istream& is, DynamicModular& x) {
return is >> x.val_;
}
};
template<int Id>
unsigned int DynamicModular<Id>::mod_;
#line 264 "include/mtl/modular.hpp"
template<class ModInt>
struct ModularUtil {
static constexpr int mod = ModInt::mod();
static struct inv_table {
std::vector<ModInt> tb{0,1};
inv_table() : tb({0,1}) {}
} inv_;
void set_inv(int n) {
int m = inv_.tb.size();
if (m > n) return;
inv_.tb.resize(n+1);
for (int i = m; i < n+1; i++)
inv_.tb[i] = -inv_.tb[mod % i] * (mod / i);
}
ModInt& inv(int i) {
set_inv(i);
return inv_.tb[i];
}
};
template<class ModInt>
typename ModularUtil<ModInt>::inv_table ModularUtil<ModInt>::inv_;
#line 288 "include/mtl/modular.hpp"
namespace math {
constexpr int mod_pow_constexpr(int x, int p, int m) {
long long t = 1;
long long u = x;
while (p) {
if (p & 1) {
t *= u;
t %= m;
}
u *= u;
u %= m;
p >>= 1;
}
return (int) t;
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 880803841) return 26;
if (m == 998244353) return 3;
std::array<int, 20> divs{};
int cnt = 0;
int x = m-1;
if (x % 2 == 0) {
divs[cnt++] = 2;
x >>= bm::ctz(x);
}
for (int d = 3; d*d <= x; d += 2) {
if (x % d == 0) {
divs[cnt++] = d;
while (x % d == 0)
x /= d;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2; g < m; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (mod_pow_constexpr(g, (m-1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
return -1;
}
template<int m>
constexpr int primitive_root = primitive_root_constexpr(m);
}
#line 4 "test/yosupo/matrix/system_of_linear_equations.test.cpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modular998244353;
int main() {
int n,m; cin>>n>>m;
Matrix<mint,500,500> A;
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) {
cin>>A[i][j];
}
Matrix<mint,500,1> b;
for (int i = 0; i < n; i++) {
cin>>b[i][0];
}
auto [rank,ans_basis,suc] = A.solve(b, n, m);
if (!suc) {
cout << -1 << endl;
return 0;
}
cout << rank << endl;
for (int i = 0; i < m; i++) {
cout << ans_basis[0][i] << ' ';
}
cout << endl;
for (int i = 0; i < (int)rank; i++) {
for (int j = 0; j < m; j++) {
cout << ans_basis[i+1][j] << ' ';
}
cout << endl;
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 |
![]() |
9 ms | 7 MB |
g++ | fullrank_00 |
![]() |
45 ms | 7 MB |
g++ | fullrank_01 |
![]() |
45 ms | 7 MB |
g++ | fullrank_02 |
![]() |
24 ms | 7 MB |
g++ | fullrank_no_solution_00 |
![]() |
45 ms | 7 MB |
g++ | fullrank_no_solution_01 |
![]() |
46 ms | 7 MB |
g++ | fullrank_no_solution_02 |
![]() |
24 ms | 7 MB |
g++ | hack_00 |
![]() |
30 ms | 7 MB |
g++ | hack_01 |
![]() |
24 ms | 7 MB |
g++ | hack_02 |
![]() |
27 ms | 7 MB |
g++ | hack_03 |
![]() |
11 ms | 7 MB |
g++ | hack_04 |
![]() |
17 ms | 7 MB |
g++ | hack_05 |
![]() |
26 ms | 7 MB |
g++ | lowrank_00 |
![]() |
117 ms | 7 MB |
g++ | lowrank_01 |
![]() |
106 ms | 7 MB |
g++ | lowrank_02 |
![]() |
66 ms | 7 MB |
g++ | lowrank_03 |
![]() |
95 ms | 7 MB |
g++ | lowrank_04 |
![]() |
92 ms | 7 MB |
g++ | lowrank_05 |
![]() |
105 ms | 7 MB |
g++ | max_00 |
![]() |
176 ms | 7 MB |
g++ | max_01 |
![]() |
176 ms | 7 MB |
g++ | max_02 |
![]() |
176 ms | 7 MB |
g++ | random_00 |
![]() |
37 ms | 7 MB |
g++ | random_01 |
![]() |
31 ms | 7 MB |
g++ | random_02 |
![]() |
29 ms | 7 MB |
g++ | random_03 |
![]() |
31 ms | 7 MB |
g++ | random_04 |
![]() |
15 ms | 7 MB |
clang++ | example_00 |
![]() |
8 ms | 7 MB |
clang++ | fullrank_00 |
![]() |
43 ms | 7 MB |
clang++ | fullrank_01 |
![]() |
44 ms | 7 MB |
clang++ | fullrank_02 |
![]() |
22 ms | 7 MB |
clang++ | fullrank_no_solution_00 |
![]() |
42 ms | 6 MB |
clang++ | fullrank_no_solution_01 |
![]() |
43 ms | 6 MB |
clang++ | fullrank_no_solution_02 |
![]() |
22 ms | 6 MB |
clang++ | hack_00 |
![]() |
23 ms | 7 MB |
clang++ | hack_01 |
![]() |
20 ms | 7 MB |
clang++ | hack_02 |
![]() |
22 ms | 7 MB |
clang++ | hack_03 |
![]() |
9 ms | 7 MB |
clang++ | hack_04 |
![]() |
13 ms | 7 MB |
clang++ | hack_05 |
![]() |
23 ms | 7 MB |
clang++ | lowrank_00 |
![]() |
110 ms | 6 MB |
clang++ | lowrank_01 |
![]() |
98 ms | 7 MB |
clang++ | lowrank_02 |
![]() |
64 ms | 6 MB |
clang++ | lowrank_03 |
![]() |
88 ms | 7 MB |
clang++ | lowrank_04 |
![]() |
86 ms | 6 MB |
clang++ | lowrank_05 |
![]() |
96 ms | 7 MB |
clang++ | max_00 |
![]() |
166 ms | 7 MB |
clang++ | max_01 |
![]() |
166 ms | 7 MB |
clang++ | max_02 |
![]() |
166 ms | 7 MB |
clang++ | random_00 |
![]() |
34 ms | 7 MB |
clang++ | random_01 |
![]() |
29 ms | 7 MB |
clang++ | random_02 |
![]() |
26 ms | 7 MB |
clang++ | random_03 |
![]() |
29 ms | 7 MB |
clang++ | random_04 |
![]() |
13 ms | 7 MB |