matsutaku-library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub MatsuTaku/matsutaku-library

:heavy_check_mark: test/yosupo/vertex_add_subtree_sum.test.cpp

Code

#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_subtree_sum"
#include "include/mtl/hld.hpp"
#include "include/mtl/fenwick_tree.hpp"
#include <bits/stdc++.h>
using namespace std;

int main() {
    int n,q; cin>>n>>q;
    vector<int> A(n);
    for (int i = 0; i < n; i++) cin>>A[i];
    Hld T(n);
    for (int i = 1; i < n; i++) {
        int p; cin>>p;
        T.add_edge(p, i);
    }
    T.build(0);
    decltype(A) B(n);
    for (int i = 0; i < n; i++) B[T.in[i]] = A[i];
    FenwickTree<long long> ft(B.begin(), B.end());
    auto add = [&](int i, auto v) { ft.add(i, v); };
    auto sum = [&](int l, int r) { return ft.range_sum(l, r); };
    T.subtree_build(add, sum);
    for (int i = 0; i < q; i++) {
        int t; cin>>t;
        if (t == 0) {
            int u,x; cin>>u>>x;
            T.subtree_point_add(u, add, x);
        } else {
            int u; cin>>u;
            cout << T.subtree_sum<long long>(u, sum) << endl;
        }
    }
}
#line 1 "test/yosupo/vertex_add_subtree_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_subtree_sum"
#line 2 "include/mtl/hld.hpp"
#include <cstddef>
#include <vector>

struct Hld {
  int r,n;
  std::vector<std::vector<int>> edge;
  std::vector<int> size, in, out, head, rev, par, depth, clen;
 private:
  void dfs_sz(int v, int p, int d) {
    par[v] = p;
    size[v] = 1;
    if (!edge[v].empty() and edge[v][0] == p)
      std::swap(edge[v][0], edge[v].back());
    for (auto& t:edge[v]) {
      if (t == p) continue;
      dfs_sz(t, v, d+1);
      size[v] += size[t];
      if (size[edge[v][0]] < size[t])
        std::swap(edge[v][0], t);
    }
  }
  void dfs_hld(int v, int p, int& times) {
    in[v] = times++;
    rev[in[v]] = v;
    clen[v] = 1;
    if (!edge[v].empty() and edge[v][0] != p) {
      int t = edge[v][0];
      head[t] = head[v];
      depth[t] = depth[v];
      dfs_hld(t, v, times);
      clen[v] += clen[t];
    }
    for (size_t i = 1; i < edge[v].size(); i++) {
      int t = edge[v][i];
      if (t == p) continue;
      head[t] = t;
      depth[t] = depth[v] + 1;
      dfs_hld(t, v, times);
    }
    out[v] = times;
  }

 public:
  Hld(int n) : r(0), n(n), edge(n), size(n), in(n, -1), out(n, -1), head(n, -1), rev(n, -1), par(n, -1), depth(n, -1), clen(n) {}

  inline void add_edge(int a, int b) {
    edge[a].push_back(b);
    edge[b].push_back(a);
  }

  void build(int root = 0) {
    r = root;
    dfs_sz(root, -1, 0);
    int t = 0;
    head[root] = root;
    depth[root] = 0;
    dfs_hld(root, -1, t);
  }

  inline int lca(int a, int b) const {
    if (depth[a] > depth[b]) std::swap(a, b);
    while (depth[a] < depth[b]) {
      b = par[head[b]];
    }
    while (head[a] != head[b]) {
      a = par[head[a]];
      b = par[head[b]];
    }
    return in[a] < in[b] ? a : b;
  }

 private:
  template<class Query, class ReverseQuery>
  auto _query(int u, int v, Query Q, ReverseQuery RQ, bool include_lca) const -> decltype(Q(0,0)) {
    using T = decltype(Q(0,0));
    T um, vm;
    auto u_up = [&]() {
      um = um * (T)RQ(in[head[u]], in[u]+1);
      u = par[head[u]];
    };
    auto v_up = [&]() {
      vm = (T)Q(in[head[v]], in[v]+1) * vm;
      v = par[head[v]];
    };
    while (depth[u] > depth[v])
      u_up();
    while (depth[u] < depth[v])
      v_up();
    while (head[u] != head[v]) {
      u_up();
      v_up();
    }
    if (in[u] < in[v]) {
      int l = include_lca ? in[u] : in[u]+1;
      return um * (T)Q(l, in[v]+1) * vm;
    } else {
      int l = include_lca ? in[v] : in[v]+1;
      return um * (T)RQ(l, in[u]+1) * vm;
    }
  }

 public:
  template<class Query, class ReverseQuery>
  auto query(int u, int v, Query Q, ReverseQuery RQ, bool include_lca = true) const -> decltype(Q(0,0)) {
    return _query(u, v, Q, RQ, include_lca);
  }

  /// Query for commutative monoid
  template<class Query>
  auto query(int u, int v, Query Q, bool include_lca = true) const -> decltype(Q(0,0)) {
    return _query(u, v, Q, Q, include_lca);
  }

  template<class Set, class T>
  void set(int i, Set S, T&& val) const {
    S(in[i], std::forward<T>(val));
  }

  template<typename Upd, typename T>
  void update(int u, int v, Upd U, const T& val, bool include_lca = true) const {
    if (depth[u] > depth[v]) std::swap(u,v);
    auto up = [&](int& v) {
      U(in[head[v]], in[v]+1, val);
      v = par[head[v]];
    };
    while (depth[u] < depth[v]) {
      up(v);
    }
    while (head[u] != head[v]) {
      up(u);
      up(v);
    }
    if (in[u] > in[v]) std::swap(u,v);
    int l = include_lca ? in[u] : in[u]+1;
    U(l, in[v]+1, val);
  }

public:
  template<class Add, class Sum>
  void subtree_build(Add A, Sum S) const {
    dfs_subtree_build(A, S, r);
  }
 private:
  template<class Add, class Sum>
  void dfs_subtree_build(Add A, Sum S, int u) const {
    for (size_t i = 0; i < edge[u].size(); i++) {
      auto v = edge[u][i];
      if (v == par[u]) continue;
      dfs_subtree_build(A, S, v);
      if (i > 0)
        A(in[u], S(in[v], in[v]+clen[v]));
    }
  }
 public:
  template<class T, class Sum>
  T subtree_sum(int r, Sum S) const {
    return (T)S(in[r], in[r]+clen[r]);
  }
  template<class T, class Add>
  void subtree_point_add(int u, Add A, const T& val) const {
    while (u != -1) {
      A(in[u], val);
      u = par[head[u]];
    }
  }
};
#line 2 "include/mtl/bit_manip.hpp"
#include <cstdint>
#include <cassert>
#if __cplusplus >= 202002L
#ifndef MTL_CPP20
#define MTL_CPP20
#endif
#include <bit>
#endif

namespace bm {

/// Count 1s for each 8 bits
inline constexpr uint64_t popcnt_e8(uint64_t x) {
  x = (x & 0x5555555555555555) + ((x>>1) & 0x5555555555555555);
  x = (x & 0x3333333333333333) + ((x>>2) & 0x3333333333333333);
  x = (x & 0x0F0F0F0F0F0F0F0F) + ((x>>4) & 0x0F0F0F0F0F0F0F0F);
  return x;
}
/// Count 1s
inline constexpr unsigned popcnt(uint64_t x) {
#ifdef MTL_CPP20
  return std::popcount(x);
#else
  return (popcnt_e8(x) * 0x0101010101010101) >> 56;
#endif
}
/// Alias to mtl::popcnt(x)
constexpr unsigned popcount(uint64_t x) {
  return popcnt(x);
}
/// Count trailing 0s. s.t. *11011000 -> 3
inline constexpr unsigned ctz(uint64_t x) {
#ifdef MTL_CPP20
  return std::countr_zero(x);
#else
  return popcnt((x & (-x)) - 1);
#endif
}
/// Alias to mtl::ctz(x)
constexpr unsigned countr_zero(uint64_t x) {
  return ctz(x);
}
/// Count trailing 1s. s.t. *11011011 -> 2
inline constexpr unsigned cto(uint64_t x) {
#ifdef MTL_CPP20
  return std::countr_one(x);
#else
  return ctz(~x);
#endif
}
/// Alias to mtl::cto(x)
constexpr unsigned countr_one(uint64_t x) {
  return cto(x);
}
inline constexpr unsigned ctz8(uint8_t x) {
  return x == 0 ? 8 : popcnt_e8((x & (-x)) - 1);
}
/// [00..0](8bit) -> 0, [**..*](not only 0) -> 1
inline constexpr uint8_t summary(uint64_t x) {
  constexpr uint64_t hmask = 0x8080808080808080ull;
  constexpr uint64_t lmask = 0x7F7F7F7F7F7F7F7Full;
  auto a = x & hmask;
  auto b = x & lmask;
  b = hmask - b;
  b = ~b;
  auto c = (a | b) & hmask;
  c *= 0x0002040810204081ull;
  return uint8_t(c >> 56);
}
/// Extract target area of bits
inline constexpr uint64_t bextr(uint64_t x, unsigned start, unsigned len) {
  uint64_t mask = len < 64 ? (1ull<<len)-1 : 0xFFFFFFFFFFFFFFFFull;
  return (x >> start) & mask;
}
/// 00101101 -> 00111111 -count_1s-> 6
inline constexpr unsigned log2p1(uint8_t x) {
  if (x & 0x80)
    return 8;
  uint64_t p = uint64_t(x) * 0x0101010101010101ull;
  p -= 0x8040201008040201ull;
  p = ~p & 0x8080808080808080ull;
  p = (p >> 7) * 0x0101010101010101ull;
  p >>= 56;
  return p;
}
/// 00101100 -mask_mssb-> 00100000 -to_index-> 5
inline constexpr unsigned mssb8(uint8_t x) {
  assert(x != 0);
  return log2p1(x) - 1;
}
/// 00101100 -mask_lssb-> 00000100 -to_index-> 2
inline constexpr unsigned lssb8(uint8_t x) {
  assert(x != 0);
  return popcnt_e8((x & -x) - 1);
}
/// Count leading 0s. 00001011... -> 4
inline constexpr unsigned clz(uint64_t x) {
#ifdef MTL_CPP20
  return std::countl_zero(x);
#else
  if (x == 0)
    return 64;
  auto i = mssb8(summary(x));
  auto j = mssb8(bextr(x, 8 * i, 8));
  return 63 - (8 * i + j);
#endif
}
/// Alias to mtl::clz(x)
constexpr unsigned countl_zero(uint64_t x) {
  return clz(x);
}
/// Count leading 1s. 11110100... -> 4
inline constexpr unsigned clo(uint64_t x) {
#ifdef MTL_CPP20
  return std::countl_one(x);
#else
  return clz(~x);
#endif
}
/// Alias to mtl::clo(x)
constexpr unsigned countl_one(uint64_t x) {
  return clo(x);
}

inline constexpr unsigned clz8(uint8_t x) {
  return x == 0 ? 8 : 7 - mssb8(x);
}
inline constexpr uint64_t bit_reverse(uint64_t x) {
  x = ((x & 0x00000000FFFFFFFF) << 32) | ((x & 0xFFFFFFFF00000000) >> 32);
  x = ((x & 0x0000FFFF0000FFFF) << 16) | ((x & 0xFFFF0000FFFF0000) >> 16);
  x = ((x & 0x00FF00FF00FF00FF) << 8) | ((x & 0xFF00FF00FF00FF00) >> 8);
  x = ((x & 0x0F0F0F0F0F0F0F0F) << 4) | ((x & 0xF0F0F0F0F0F0F0F0) >> 4);
  x = ((x & 0x3333333333333333) << 2) | ((x & 0xCCCCCCCCCCCCCCCC) >> 2);
  x = ((x & 0x5555555555555555) << 1) | ((x & 0xAAAAAAAAAAAAAAAA) >> 1);
  return x;
}

/// Check if x is power of 2. 00100000 -> true, 00100001 -> false
constexpr bool has_single_bit(uint64_t x) noexcept {
#ifdef MTL_CPP20
  return std::has_single_bit(x);
#else
  return x != 0 && (x & (x - 1)) == 0;
#endif
}

/// Bit width needs to represent x. 00110110 -> 6
constexpr int bit_width(uint64_t x) noexcept {
#ifdef MTL_CPP20
  return std::bit_width(x);
#else
  return 64 - clz(x);
#endif
}

/// Ceil power of 2. 00110110 -> 01000000
constexpr uint64_t bit_ceil(uint64_t x) {
#ifdef MTL_CPP20
  return std::bit_ceil(x);
#else
  if (x == 0) return 1;
  return 1ull << bit_width(x - 1);
#endif
}

/// Floor power of 2. 00110110 -> 00100000
constexpr uint64_t bit_floor(uint64_t x) {
#ifdef MTL_CPP20
  return std::bit_floor(x);
#else
  if (x == 0) return 0;
  return 1ull << (bit_width(x) - 1);
#endif
}

} // namespace bm
#line 5 "include/mtl/fenwick_tree.hpp"

template <class T>
class FenwickTree {
 private:
  std::vector<T> tree_;

 public:
  FenwickTree() = default;
  explicit FenwickTree(size_t size) : tree_(size+1) {}

  size_t size() const { return tree_.size()-1; }

  template <class Iter>
  explicit FenwickTree(Iter begin, Iter end) : FenwickTree(std::distance(begin, end)) {
    size_t i = 1;
    for (auto it = begin; it != end; ++it) {
      tree_[i] = tree_[i] + *it;
      auto j = i + (i&(-i));
      if (j < tree_.size())
        tree_[j] = tree_[j] + tree_[i];
      ++i;
    }
  }

  template<class V>
  void add(size_t index, const V& x) {
    for (size_t i = index+1; i < tree_.size(); i += i&(-i))
      tree_[i] = tree_[i] + x;
  }

  T sum(size_t index) const {
    T sum = 0;
    for (size_t i = index+1; i > 0; i -= i&(-i))
      sum = sum + tree_[i];
    return sum;
  }

  T range_sum(size_t l, size_t r) const {
    auto sl = l > 0 ? sum(l-1) : 0;
    auto sr = r > 0 ? sum(r-1) : 0;
    return sr - sl;
  }
  /// @brief Alias of range_sum(l, r)
  T sum(size_t l, size_t r) const {
    return range_sum(l, r);
  }

  template<class V>
  size_t lower_bound(const V& _sum) const {
    size_t ret = 0;
    T s = 0;
    for (int k = 63-bm::clz(size()); k >= 0; k--) {
      size_t j = ret | (1ull<<k);
      if (j < tree_.size() and s + tree_[j] < _sum) {
        s = s + tree_[j];
        ret = j;
      }
    }
    return ret;
  }

};

#line 4 "test/yosupo/vertex_add_subtree_sum.test.cpp"
#include <bits/stdc++.h>
using namespace std;

int main() {
    int n,q; cin>>n>>q;
    vector<int> A(n);
    for (int i = 0; i < n; i++) cin>>A[i];
    Hld T(n);
    for (int i = 1; i < n; i++) {
        int p; cin>>p;
        T.add_edge(p, i);
    }
    T.build(0);
    decltype(A) B(n);
    for (int i = 0; i < n; i++) B[T.in[i]] = A[i];
    FenwickTree<long long> ft(B.begin(), B.end());
    auto add = [&](int i, auto v) { ft.add(i, v); };
    auto sum = [&](int l, int r) { return ft.range_sum(l, r); };
    T.subtree_build(add, sum);
    for (int i = 0; i < q; i++) {
        int t; cin>>t;
        if (t == 0) {
            int u,x; cin>>u>>x;
            T.subtree_point_add(u, add, x);
        } else {
            int u; cin>>u;
            cout << T.subtree_sum<long long>(u, sum) << endl;
        }
    }
}

Test cases

Env Name Status Elapsed Memory
g++ example_00 :heavy_check_mark: AC 6 ms 3 MB
g++ line_00 :heavy_check_mark: AC 1000 ms 234 MB
g++ line_01 :heavy_check_mark: AC 976 ms 234 MB
g++ max_random_00 :heavy_check_mark: AC 1020 ms 55 MB
g++ max_random_01 :heavy_check_mark: AC 1056 ms 55 MB
g++ max_random_02 :heavy_check_mark: AC 1209 ms 55 MB
g++ random_00 :heavy_check_mark: AC 795 ms 43 MB
g++ random_01 :heavy_check_mark: AC 944 ms 51 MB
g++ random_02 :heavy_check_mark: AC 434 ms 9 MB
g++ random_03 :heavy_check_mark: AC 374 ms 47 MB
g++ random_04 :heavy_check_mark: AC 329 ms 32 MB
g++ small_00 :heavy_check_mark: AC 7 ms 4 MB
g++ small_01 :heavy_check_mark: AC 7 ms 3 MB
g++ small_02 :heavy_check_mark: AC 7 ms 3 MB
g++ small_03 :heavy_check_mark: AC 7 ms 4 MB
g++ small_04 :heavy_check_mark: AC 6 ms 4 MB
clang++ example_00 :heavy_check_mark: AC 6 ms 3 MB
clang++ line_00 :heavy_check_mark: AC 862 ms 85 MB
clang++ line_01 :heavy_check_mark: AC 846 ms 85 MB
clang++ max_random_00 :heavy_check_mark: AC 1038 ms 55 MB
clang++ max_random_01 :heavy_check_mark: AC 1021 ms 55 MB
clang++ max_random_02 :heavy_check_mark: AC 995 ms 55 MB
clang++ random_00 :heavy_check_mark: AC 769 ms 43 MB
clang++ random_01 :heavy_check_mark: AC 903 ms 51 MB
clang++ random_02 :heavy_check_mark: AC 423 ms 9 MB
clang++ random_03 :heavy_check_mark: AC 391 ms 47 MB
clang++ random_04 :heavy_check_mark: AC 328 ms 32 MB
clang++ small_00 :heavy_check_mark: AC 8 ms 3 MB
clang++ small_01 :heavy_check_mark: AC 7 ms 3 MB
clang++ small_02 :heavy_check_mark: AC 8 ms 3 MB
clang++ small_03 :heavy_check_mark: AC 8 ms 4 MB
clang++ small_04 :heavy_check_mark: AC 7 ms 3 MB
Back to top page