This documentation is automatically generated by competitive-verifier/competitive-verifier
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#include "include/mtl/dual_segment_tree.hpp"
#include "include/mtl/modular.hpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modular998244353;
struct Poly {
mint a,b;
Poly() : a(1), b(0) {}
Poly(int x) : a(0), b(x) {}
Poly(int a, int b) : a(a), b(b) {}
Poly& operator*=(const Poly& r) {
a *= r.a;
b = b * r.a + r.b;
return *this;
}
auto val() const {return b;}
};
using RA = DualSegmentTree<Poly>;
int main() {
int n,q; cin>>n>>q;
vector<int> A(n);
for (int i = 0; i < n; i++) cin>>A[i];
RA ra(A.begin(), A.end());
for (int i = 0; i < q; i++) {
int t; cin>>t;
if (t == 0) {
int l,r,b,c; cin>>l>>r>>b>>c;
ra.update(l,r,Poly{b,c});
} else {
int i; cin>>i;
cout << ra.get(i).val() << endl;
}
}
}
#line 1 "test/yosupo/yosupo-range_affine_point_get.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_point_get"
#line 2 "include/mtl/bit_manip.hpp"
#include <cstdint>
#include <cassert>
#if __cplusplus >= 202002L
#ifndef MTL_CPP20
#define MTL_CPP20
#endif
#include <bit>
#endif
namespace bm {
/// Count 1s for each 8 bits
inline constexpr uint64_t popcnt_e8(uint64_t x) {
x = (x & 0x5555555555555555) + ((x>>1) & 0x5555555555555555);
x = (x & 0x3333333333333333) + ((x>>2) & 0x3333333333333333);
x = (x & 0x0F0F0F0F0F0F0F0F) + ((x>>4) & 0x0F0F0F0F0F0F0F0F);
return x;
}
/// Count 1s
inline constexpr unsigned popcnt(uint64_t x) {
#ifdef MTL_CPP20
return std::popcount(x);
#else
return (popcnt_e8(x) * 0x0101010101010101) >> 56;
#endif
}
/// Alias to mtl::popcnt(x)
constexpr unsigned popcount(uint64_t x) {
return popcnt(x);
}
/// Count trailing 0s. s.t. *11011000 -> 3
inline constexpr unsigned ctz(uint64_t x) {
#ifdef MTL_CPP20
return std::countr_zero(x);
#else
return popcnt((x & (-x)) - 1);
#endif
}
/// Alias to mtl::ctz(x)
constexpr unsigned countr_zero(uint64_t x) {
return ctz(x);
}
/// Count trailing 1s. s.t. *11011011 -> 2
inline constexpr unsigned cto(uint64_t x) {
#ifdef MTL_CPP20
return std::countr_one(x);
#else
return ctz(~x);
#endif
}
/// Alias to mtl::cto(x)
constexpr unsigned countr_one(uint64_t x) {
return cto(x);
}
inline constexpr unsigned ctz8(uint8_t x) {
return x == 0 ? 8 : popcnt_e8((x & (-x)) - 1);
}
/// [00..0](8bit) -> 0, [**..*](not only 0) -> 1
inline constexpr uint8_t summary(uint64_t x) {
constexpr uint64_t hmask = 0x8080808080808080ull;
constexpr uint64_t lmask = 0x7F7F7F7F7F7F7F7Full;
auto a = x & hmask;
auto b = x & lmask;
b = hmask - b;
b = ~b;
auto c = (a | b) & hmask;
c *= 0x0002040810204081ull;
return uint8_t(c >> 56);
}
/// Extract target area of bits
inline constexpr uint64_t bextr(uint64_t x, unsigned start, unsigned len) {
uint64_t mask = len < 64 ? (1ull<<len)-1 : 0xFFFFFFFFFFFFFFFFull;
return (x >> start) & mask;
}
/// 00101101 -> 00111111 -count_1s-> 6
inline constexpr unsigned log2p1(uint8_t x) {
if (x & 0x80)
return 8;
uint64_t p = uint64_t(x) * 0x0101010101010101ull;
p -= 0x8040201008040201ull;
p = ~p & 0x8080808080808080ull;
p = (p >> 7) * 0x0101010101010101ull;
p >>= 56;
return p;
}
/// 00101100 -mask_mssb-> 00100000 -to_index-> 5
inline constexpr unsigned mssb8(uint8_t x) {
assert(x != 0);
return log2p1(x) - 1;
}
/// 00101100 -mask_lssb-> 00000100 -to_index-> 2
inline constexpr unsigned lssb8(uint8_t x) {
assert(x != 0);
return popcnt_e8((x & -x) - 1);
}
/// Count leading 0s. 00001011... -> 4
inline constexpr unsigned clz(uint64_t x) {
#ifdef MTL_CPP20
return std::countl_zero(x);
#else
if (x == 0)
return 64;
auto i = mssb8(summary(x));
auto j = mssb8(bextr(x, 8 * i, 8));
return 63 - (8 * i + j);
#endif
}
/// Alias to mtl::clz(x)
constexpr unsigned countl_zero(uint64_t x) {
return clz(x);
}
/// Count leading 1s. 11110100... -> 4
inline constexpr unsigned clo(uint64_t x) {
#ifdef MTL_CPP20
return std::countl_one(x);
#else
return clz(~x);
#endif
}
/// Alias to mtl::clo(x)
constexpr unsigned countl_one(uint64_t x) {
return clo(x);
}
inline constexpr unsigned clz8(uint8_t x) {
return x == 0 ? 8 : 7 - mssb8(x);
}
inline constexpr uint64_t bit_reverse(uint64_t x) {
x = ((x & 0x00000000FFFFFFFF) << 32) | ((x & 0xFFFFFFFF00000000) >> 32);
x = ((x & 0x0000FFFF0000FFFF) << 16) | ((x & 0xFFFF0000FFFF0000) >> 16);
x = ((x & 0x00FF00FF00FF00FF) << 8) | ((x & 0xFF00FF00FF00FF00) >> 8);
x = ((x & 0x0F0F0F0F0F0F0F0F) << 4) | ((x & 0xF0F0F0F0F0F0F0F0) >> 4);
x = ((x & 0x3333333333333333) << 2) | ((x & 0xCCCCCCCCCCCCCCCC) >> 2);
x = ((x & 0x5555555555555555) << 1) | ((x & 0xAAAAAAAAAAAAAAAA) >> 1);
return x;
}
/// Check if x is power of 2. 00100000 -> true, 00100001 -> false
constexpr bool has_single_bit(uint64_t x) noexcept {
#ifdef MTL_CPP20
return std::has_single_bit(x);
#else
return x != 0 && (x & (x - 1)) == 0;
#endif
}
/// Bit width needs to represent x. 00110110 -> 6
constexpr int bit_width(uint64_t x) noexcept {
#ifdef MTL_CPP20
return std::bit_width(x);
#else
return 64 - clz(x);
#endif
}
/// Ceil power of 2. 00110110 -> 01000000
constexpr uint64_t bit_ceil(uint64_t x) {
#ifdef MTL_CPP20
return std::bit_ceil(x);
#else
if (x == 0) return 1;
return 1ull << bit_width(x - 1);
#endif
}
/// Floor power of 2. 00110110 -> 00100000
constexpr uint64_t bit_floor(uint64_t x) {
#ifdef MTL_CPP20
return std::bit_floor(x);
#else
if (x == 0) return 0;
return 1ull << (bit_width(x) - 1);
#endif
}
} // namespace bm
#line 3 "include/mtl/dual_segment_tree.hpp"
#include <cstddef>
#include <vector>
#include <algorithm>
#include <stack>
#line 8 "include/mtl/dual_segment_tree.hpp"
#if __cpp_concepts >= 202002L
#include <concepts>
template<typename M>
concept IdDualSegmentTreeMonoid = requires (M m) {
{m *= m} -> std::same_as<M&>;
};
#endif
template <
#if __cpp_concepts >= 202002L
IdDualSegmentTreeMonoid
#else
class
#endif
M
>
class DualSegmentTree {
private:
size_t size_;
using tree_type = std::vector<M>;
tree_type tree_;
std::vector<size_t> ids_;
int log(size_t x) const {
return 64 - bm::clz(x-1);
}
public:
explicit DualSegmentTree(size_t size) :
size_(size),
tree_(size_*2) {
ids_.reserve(log(size)*2);
}
template <typename Iter>
explicit DualSegmentTree(Iter begin, Iter end)
: DualSegmentTree(std::distance(begin, end)) {
static_assert(std::is_convertible<typename std::iterator_traits<Iter>::value_type, M>::value, "");
std::copy(begin, end, tree_.begin()+size_);
}
void update(size_t l, size_t r, const M& e) {
assert(l <= r and r <= size_);
if (l == r) return;
_lazy_propagation(l, r);
for (size_t _l=l+size_, _r=r+size_, s=1; _l<_r; _l>>=1, _r>>=1, s*=2) {
if (_l&1) {
tree_[_l] *= e;
++_l;
}
if (_r&1) {
--_r;
tree_[_r] *= e;
}
}
}
void update(size_t i, const M& e) {
update(i, i+1, e);
}
void set(size_t index, const M& e) {
assert(index < size_);
_lazy_propagation(index, index+1);
tree_[size_ + index] = e;
}
M get(size_t index) {
assert(index < size_);
_lazy_propagation(index, index+1);
return tree_[size_ + index];
}
private:
void _set_ids(size_t l, size_t r) {
ids_.clear();
auto _l=l+size_, _r=r+size_;
auto lth = _l/(_l&(-_l))/2;
auto rth = _r/(_r&(-_r))/2;
for (; _l<_r; _l>>=1, _r>>=1) {
if (_r <= rth) ids_.emplace_back(_r);
if (_l <= lth) ids_.emplace_back(_l);
}
for (; _l>0; _l>>=1) {
ids_.emplace_back(_l);
}
}
void _propagate(size_t id) {
if (id >= size_) return;
M e = tree_[id];
tree_[id] = M();
tree_[id*2] *= e;
tree_[id*2+1] *= e;
}
void _lazy_propagation(size_t l, size_t r) {
if (l == r) return;
_set_ids(l, r);
for (auto it = ids_.rbegin(); it != ids_.rend(); ++it)
_propagate(*it);
}
public:
template<class F>
size_t max_right(size_t begin, size_t end, F f) {
if (begin == end) return end;
M p;
std::stack<std::pair<size_t, M>> rps;
auto l = size_ + begin;
auto r = size_ + end;
_lazy_propagation(begin, end);
auto access = [&](size_t i) {
_propagate(i);
return tree_[i].first;
};
while (l < r and f(p * access(l))) {
if (l&1) p = p * tree_[l++].first;
if (r&1) {
rps.emplace(r, access(r-1));
r--;
}
l>>=1; r>>=1;
}
if (l >= r) {
while (rps.size()) {
auto& [r, rp] = rps.top();
if (!f(p * rp)) {
l = r-1;
break;
}
p = p * rp;
rps.pop();
}
if (rps.empty()) return end;
}
while (l < size_) {
assert(!f(p * access(l)));
l <<= 1;
auto pl = access(l);
if (f(p * pl)) {
p = p * pl;
l++;
}
}
return l - size_;
}
template<bool (*F)(M)>
size_t max_right(size_t begin, size_t end) {
return max_right(begin, end, [](M x) { return F(x); });
}
template<class F>
size_t min_left(size_t begin, size_t end, F f) {
if (end == begin) return begin;
M p;
std::stack<std::pair<size_t, M>> lps;
auto l = size_ + begin;
auto r = size_ + end;
_lazy_propagation(begin, end);
auto access = [&](size_t i) {
_propagate(i);
return tree_[i].first;
};
while (l < r and f(access(r-1) * p)) {
if (l&1) {
lps.emplace(l, access(l));
l++;
}
if (r&1) p = tree_[r-1].first * p;
l>>=1; r>>=1;
}
if (l >= r) {
while (lps.size()) {
auto& [l, lp] = lps.top();
if (!f(lp * p)) {
r = l+1;
break;
}
p = lp * p;
lps.pop();
}
if (lps.empty()) return begin;
}
while (r <= size_) {
assert(!f(access(r-1) * p));
r <<= 1;
auto pr = access(r-1);
if (f(pr * p)) {
p = pr * p;
--r;
}
}
return r - size_;
}
template<bool (*F)(M)>
size_t min_left(size_t begin, size_t end) {
return min_left(begin, [](M x) { return F(x); });
}
private:
template<bool> struct iterator_base;
template<bool> friend struct iterator_base;
template<bool Const>
struct iterator_base {
using value_type = std::conditional_t<Const, const M, M>;
using pointer = std::conditional_t<Const, const M*, M*>;
using reference = std::conditional_t<Const, const M&, M&>;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
DualSegmentTree* tree_ptr;
size_t idx;
iterator_base(DualSegmentTree* tree_ptr, size_t idx) : tree_ptr(tree_ptr), idx(idx) {
assert(idx >= tree_ptr->size_ and idx <= tree_ptr->size_*2);
if (idx < tree_ptr->tree_.size()) tree_ptr->get(idx - tree_ptr->size_);
}
iterator_base& operator+=(difference_type n) {
auto l = idx;
idx += n;
if (idx == tree_ptr->tree_.size()) return *this;
auto x = l ^ idx;
int h = bm::ctz(~x);
--h;
while (h >= 0) {
tree_ptr->_propagate(idx>>h);
--h;
}
return *this;
}
iterator_base& operator-=(difference_type n) {
auto r = idx;
idx -= n;
auto x = idx ^ r;
int h = bm::ctz(~x);
--h;
while (h >= 0) {
tree_ptr->_propagate(idx>>h);
--h;
}
return *this;
}
iterator_base& operator++() {
return *this += 1;
}
iterator_base& operator--() {
return *this -= 1;
}
iterator_base operator++(int) { auto tmp = *this; ++idx; return tmp; }
iterator_base operator--(int) { auto tmp = *this; --idx; return tmp; }
iterator_base operator+(difference_type n) const { return iterator_base(*this) += n; }
iterator_base operator-(difference_type n) const { return iterator_base(*this) -= n; }
bool operator==(const iterator_base& o) const { return tree_ptr == o.tree_ptr and idx == o.idx; }
bool operator!=(const iterator_base& o) const { return tree_ptr != o.tree_ptr or idx != o.idx; }
difference_type operator-(const iterator_base& o) const { return idx - o.idx; }
reference operator*() const { return tree_ptr->tree_[idx]; }
pointer operator->() const { return &tree_ptr->tree_[idx]; }
};
public:
using iterator = iterator_base<false>;
using const_iterator = iterator_base<true>;
const_iterator begin() const { return const_iterator(this, size_); }
const_iterator end() const { return const_iterator(this, size_*2); }
const_iterator cbegin() const { return const_iterator(this, size_); }
const_iterator cend() const { return const_iterator(this, size_*2); }
iterator begin() { return iterator(this, size_); }
iterator end() { return iterator(this, size_*2); }
};
#line 3 "include/mtl/modular.hpp"
#include <iostream>
#line 5 "include/mtl/modular.hpp"
template <int MOD>
class Modular {
private:
unsigned int val_;
public:
static constexpr unsigned int mod() { return MOD; }
template<class T>
static constexpr unsigned int safe_mod(T v) {
auto x = (long long)(v%(long long)mod());
if (x < 0) x += mod();
return (unsigned int) x;
}
constexpr Modular() : val_(0) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && std::is_unsigned<T>::value
> * = nullptr>
constexpr Modular(T v) : val_(v%mod()) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && !std::is_unsigned<T>::value
> * = nullptr>
constexpr Modular(T v) : val_(safe_mod(v)) {}
constexpr unsigned int val() const { return val_; }
constexpr Modular& operator+=(Modular x) {
val_ += x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr Modular operator-() const { return {mod() - val_}; }
constexpr Modular& operator-=(Modular x) {
val_ += mod() - x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr Modular& operator*=(Modular x) {
auto v = (long long) val_ * x.val();
if (v >= mod()) v %= mod();
val_ = v;
return *this;
}
constexpr Modular pow(long long p) const {
assert(p >= 0);
Modular t = 1;
Modular u = *this;
while (p) {
if (p & 1)
t *= u;
u *= u;
p >>= 1;
}
return t;
}
friend constexpr Modular pow(Modular x, long long p) {
return x.pow(p);
}
constexpr Modular inv() const { return pow(mod()-2); }
constexpr Modular& operator/=(Modular x) { return *this *= x.inv(); }
constexpr Modular operator+(Modular x) const { return Modular(*this) += x; }
constexpr Modular operator-(Modular x) const { return Modular(*this) -= x; }
constexpr Modular operator*(Modular x) const { return Modular(*this) *= x; }
constexpr Modular operator/(Modular x) const { return Modular(*this) /= x; }
constexpr Modular& operator++() { return *this += 1; }
constexpr Modular operator++(int) { Modular c = *this; ++(*this); return c; }
constexpr Modular& operator--() { return *this -= 1; }
constexpr Modular operator--(int) { Modular c = *this; --(*this); return c; }
constexpr bool operator==(Modular x) const { return val() == x.val(); }
constexpr bool operator!=(Modular x) const { return val() != x.val(); }
constexpr bool is_square() const {
return pow((mod()-1)/2) == 1;
}
/**
* Return x s.t. x * x = a mod p
* reference: https://zenn.dev/peria/articles/c6afc72b6b003c
*/
constexpr Modular sqrt() const {
if (!is_square())
throw std::runtime_error("not square");
auto mod_eight = mod() % 8;
if (mod_eight == 3 || mod_eight == 7) {
return pow((mod()+1)/4);
} else if (mod_eight == 5) {
auto x = pow((mod()+3)/8);
if (x * x != *this)
x *= Modular(2).pow((mod()-1)/4);
return x;
} else {
Modular d = 2;
while (d.is_square())
d += 1;
auto t = mod()-1;
int s = bm::ctz(t);
t >>= s;
auto a = pow(t);
auto D = d.pow(t);
int m = 0;
Modular dt = 1;
Modular du = D;
for (int i = 0; i < s; i++) {
if ((a*dt).pow(1u<<(s-1-i)) == -1) {
m |= 1u << i;
dt *= du;
}
du *= du;
}
return pow((t+1)/2) * D.pow(m/2);
}
}
friend std::ostream& operator<<(std::ostream& os, const Modular& x) {
return os << x.val();
}
friend std::istream& operator>>(std::istream& is, Modular& x) {
return is >> x.val_;
}
};
using Modular998244353 = Modular<998244353>;
using Modular1000000007 = Modular<(int)1e9+7>;
template<int Id=0>
class DynamicModular {
private:
static unsigned int mod_;
unsigned int val_;
public:
static unsigned int mod() { return mod_; }
static void set_mod(unsigned int m) { mod_ = m; }
template<class T>
static constexpr unsigned int safe_mod(T v) {
auto x = (long long)(v%(long long)mod());
if (x < 0) x += mod();
return (unsigned int) x;
}
constexpr DynamicModular() : val_(0) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && std::is_unsigned<T>::value
> * = nullptr>
constexpr DynamicModular(T v) : val_(v%mod()) {}
template<class T,
std::enable_if_t<
std::is_integral<T>::value && !std::is_unsigned<T>::value
> * = nullptr>
constexpr DynamicModular(T v) : val_(safe_mod(v)) {}
constexpr unsigned int val() const { return val_; }
constexpr DynamicModular& operator+=(DynamicModular x) {
val_ += x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr DynamicModular operator-() const { return {mod() - val_}; }
constexpr DynamicModular& operator-=(DynamicModular x) {
val_ += mod() - x.val();
if (val_ >= mod()) val_ -= mod();
return *this;
}
constexpr DynamicModular& operator*=(DynamicModular x) {
auto v = (long long) val_ * x.val();
if (v >= mod()) v %= mod();
val_ = v;
return *this;
}
constexpr DynamicModular pow(long long p) const {
assert(p >= 0);
DynamicModular t = 1;
DynamicModular u = *this;
while (p) {
if (p & 1)
t *= u;
u *= u;
p >>= 1;
}
return t;
}
friend constexpr DynamicModular pow(DynamicModular x, long long p) {
return x.pow(p);
}
// TODO: implement when mod is not prime
constexpr DynamicModular inv() const { return pow(mod()-2); }
constexpr DynamicModular& operator/=(DynamicModular x) { return *this *= x.inv(); }
constexpr DynamicModular operator+(DynamicModular x) const { return DynamicModular(*this) += x; }
constexpr DynamicModular operator-(DynamicModular x) const { return DynamicModular(*this) -= x; }
constexpr DynamicModular operator*(DynamicModular x) const { return DynamicModular(*this) *= x; }
constexpr DynamicModular operator/(DynamicModular x) const { return DynamicModular(*this) /= x; }
constexpr DynamicModular& operator++() { return *this += 1; }
constexpr DynamicModular operator++(int) { DynamicModular c = *this; ++(*this); return c; }
constexpr DynamicModular& operator--() { return *this -= 1; }
constexpr DynamicModular operator--(int) { DynamicModular c = *this; --(*this); return c; }
constexpr bool operator==(DynamicModular x) const { return val() == x.val(); }
constexpr bool operator!=(DynamicModular x) const { return val() != x.val(); }
constexpr bool is_square() const {
return val() == 0 or pow((mod()-1)/2) == 1;
}
/**
* Return x s.t. x * x = a mod p
* reference: https://zenn.dev/peria/articles/c6afc72b6b003c
*/
constexpr DynamicModular sqrt() const {
// assert mod is prime
if (!is_square())
throw std::runtime_error("not square");
if (val() < 2)
return val();
auto mod_eight = mod() % 8;
if (mod_eight == 3 || mod_eight == 7) {
return pow((mod()+1)/4);
} else if (mod_eight == 5) {
auto x = pow((mod()+3)/8);
if (x * x != *this)
x *= DynamicModular(2).pow((mod()-1)/4);
return x;
} else {
DynamicModular d = 2;
while (d.is_square())
++d;
auto t = mod()-1;
int s = bm::ctz(t);
t >>= s;
auto a = pow(t);
auto D = d.pow(t);
int m = 0;
DynamicModular dt = 1;
DynamicModular du = D;
for (int i = 0; i < s; i++) {
if ((a*dt).pow(1u<<(s-1-i)) == -1) {
m |= 1u << i;
dt *= du;
}
du *= du;
}
return pow((t+1)/2) * D.pow(m/2);
}
}
friend std::ostream& operator<<(std::ostream& os, const DynamicModular& x) {
return os << x.val();
}
friend std::istream& operator>>(std::istream& is, DynamicModular& x) {
return is >> x.val_;
}
};
template<int Id>
unsigned int DynamicModular<Id>::mod_;
#line 264 "include/mtl/modular.hpp"
template<class ModInt>
struct ModularUtil {
static constexpr int mod = ModInt::mod();
static struct inv_table {
std::vector<ModInt> tb{0,1};
inv_table() : tb({0,1}) {}
} inv_;
void set_inv(int n) {
int m = inv_.tb.size();
if (m > n) return;
inv_.tb.resize(n+1);
for (int i = m; i < n+1; i++)
inv_.tb[i] = -inv_.tb[mod % i] * (mod / i);
}
ModInt& inv(int i) {
set_inv(i);
return inv_.tb[i];
}
};
template<class ModInt>
typename ModularUtil<ModInt>::inv_table ModularUtil<ModInt>::inv_;
#include <array>
namespace math {
constexpr int mod_pow_constexpr(int x, int p, int m) {
long long t = 1;
long long u = x;
while (p) {
if (p & 1) {
t *= u;
t %= m;
}
u *= u;
u %= m;
p >>= 1;
}
return (int) t;
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 880803841) return 26;
if (m == 998244353) return 3;
std::array<int, 20> divs{};
int cnt = 0;
int x = m-1;
if (x % 2 == 0) {
divs[cnt++] = 2;
x >>= bm::ctz(x);
}
for (int d = 3; d*d <= x; d += 2) {
if (x % d == 0) {
divs[cnt++] = d;
while (x % d == 0)
x /= d;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2; g < m; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (mod_pow_constexpr(g, (m-1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
return -1;
}
template<int m>
constexpr int primitive_root = primitive_root_constexpr(m);
}
#line 4 "test/yosupo/yosupo-range_affine_point_get.test.cpp"
#include <bits/stdc++.h>
using namespace std;
using mint = Modular998244353;
struct Poly {
mint a,b;
Poly() : a(1), b(0) {}
Poly(int x) : a(0), b(x) {}
Poly(int a, int b) : a(a), b(b) {}
Poly& operator*=(const Poly& r) {
a *= r.a;
b = b * r.a + r.b;
return *this;
}
auto val() const {return b;}
};
using RA = DualSegmentTree<Poly>;
int main() {
int n,q; cin>>n>>q;
vector<int> A(n);
for (int i = 0; i < n; i++) cin>>A[i];
RA ra(A.begin(), A.end());
for (int i = 0; i < q; i++) {
int t; cin>>t;
if (t == 0) {
int l,r,b,c; cin>>l>>r>>b>>c;
ra.update(l,r,Poly{b,c});
} else {
int i; cin>>i;
cout << ra.get(i).val() << endl;
}
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++ | example_00 |
![]() |
6 ms | 3 MB |
g++ | max_random_00 |
![]() |
999 ms | 13 MB |
g++ | max_random_01 |
![]() |
1039 ms | 13 MB |
g++ | max_random_02 |
![]() |
1109 ms | 13 MB |
g++ | random_00 |
![]() |
853 ms | 11 MB |
g++ | random_01 |
![]() |
870 ms | 12 MB |
g++ | random_02 |
![]() |
613 ms | 4 MB |
g++ | small_00 |
![]() |
7 ms | 3 MB |
g++ | small_01 |
![]() |
6 ms | 3 MB |
g++ | small_02 |
![]() |
6 ms | 3 MB |
g++ | small_03 |
![]() |
7 ms | 3 MB |
g++ | small_04 |
![]() |
7 ms | 3 MB |
g++ | small_05 |
![]() |
6 ms | 3 MB |
g++ | small_06 |
![]() |
7 ms | 3 MB |
g++ | small_07 |
![]() |
7 ms | 3 MB |
g++ | small_08 |
![]() |
7 ms | 3 MB |
g++ | small_09 |
![]() |
7 ms | 3 MB |
g++ | small_random_00 |
![]() |
7 ms | 3 MB |
g++ | small_random_01 |
![]() |
7 ms | 3 MB |
clang++ | example_00 |
![]() |
6 ms | 3 MB |
clang++ | max_random_00 |
![]() |
1223 ms | 13 MB |
clang++ | max_random_01 |
![]() |
1060 ms | 13 MB |
clang++ | max_random_02 |
![]() |
1007 ms | 13 MB |
clang++ | random_00 |
![]() |
1117 ms | 11 MB |
clang++ | random_01 |
![]() |
1174 ms | 12 MB |
clang++ | random_02 |
![]() |
655 ms | 4 MB |
clang++ | small_00 |
![]() |
8 ms | 3 MB |
clang++ | small_01 |
![]() |
8 ms | 3 MB |
clang++ | small_02 |
![]() |
8 ms | 3 MB |
clang++ | small_03 |
![]() |
8 ms | 3 MB |
clang++ | small_04 |
![]() |
8 ms | 3 MB |
clang++ | small_05 |
![]() |
7 ms | 3 MB |
clang++ | small_06 |
![]() |
8 ms | 3 MB |
clang++ | small_07 |
![]() |
8 ms | 3 MB |
clang++ | small_08 |
![]() |
8 ms | 3 MB |
clang++ | small_09 |
![]() |
7 ms | 3 MB |
clang++ | small_random_00 |
![]() |
7 ms | 3 MB |
clang++ | small_random_01 |
![]() |
7 ms | 3 MB |